Introduction Liver regeneration is an exceptionally complex process, orchestrated by a multitude of growth factors and cytokines. Tumor necrosis factor-alpha (TNF-a) and interleukin-6 (Il-6) have a pivotal role in the initiation of the regenerative response. Ursodeoxycholic acid (UDCA) exhibits a liver protective effect that enhances liver growth after injury. The aim of the present study is to evaluate the effect of UDCA in the circulating levels of TNF-a and Il-6 in rats undergoing extended 80% hepatectomy. Materials and methods Twenty-two male Sprague Dawley rats were randomly assigned in an experimental (UDCA group) and a control group. Mice in the UDCA-group received oral pretreatment of UDCA for two weeks preoperatively at a dosage of 25 mg/kg/day. An 80% hepatic resection was performed in both groups by resecting the middle, inferior right, and left lateral liver lobes. The experiment ended 48 hours postoperatively. Results UDCA pretreatment significantly depressed circulating levels of both TNF-a and Il-6 after the conclusion of the experiment as compared to the control group (p=0.001 and p=0.01, respectively). Furthermore, TNF-a levels were significantly reduced before the institution of liver injury (p=0.02). Mice in the UDCA-group exhibited better liver growth as demonstrated by significantly increased Ki-67 and mitotic rate (p=0.04 and p=0.02, respectively). Finally, the liver regeneration rate (LRR) was significantly elevated in the experimental group (UDCA group, 54.5% vs control group, 35.8%; p=0.002) signifying enhanced liver growth kinetics. Conclusion UDCA reduces the expression of TNF-a and Il-6 during the priming phase of liver regeneration. An 80% hepatectomy model of acute liver failure exhibited enhanced liver regeneration in the experimental group, plausibly due to the immunomodulatory effects of UDCA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810173PMC
http://dx.doi.org/10.7759/cureus.12120DOI Listing

Publication Analysis

Top Keywords

liver regeneration
16
liver growth
12
tnf-a il-6
12
control group
12
liver
11
ursodeoxycholic acid
8
udca
8
circulating levels
8
levels tnf-a
8
80% hepatectomy
8

Similar Publications

Xanthium strumarium/gelatin methacryloyl based hydrogels with anti-inflammatory and antioxidant properties for diabetic wound healing via akt/mtor pathway.

Int J Biol Macromol

January 2025

Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, Guangdong, China; Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China. Electronic address:

Chronic wound healing is often hindered by long-term inflammation and redox imbalance. Herbal medicine, with its rich medicinal components such as polysaccharides, flavonoids, phenolic acids, and small-molecule nutrients, has gained attention for its anti-inflammatory and antioxidant properties. Xanthium strumarium (XS) is a potent anti-inflammatory herb that has shown promise in treating conditions like rhinitis and may have specific benefits for chronic skin wounds.

View Article and Find Full Text PDF

Spatially restricted and ontogenically distinct hepatic macrophages are required for tissue repair.

Immunity

January 2025

Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium. Electronic address:

Our understanding of the functional heterogeneity of resident versus recruited macrophages in the diseased liver is limited. A population of recruited lipid-associated macrophages (LAMs) has been reported to populate the diseased liver alongside resident Kupffer cells (KCs). However, the precise roles of these distinct macrophage subsets remain elusive.

View Article and Find Full Text PDF

Immunology of Biliary Atresia.

Semin Pediatr Surg

January 2025

Department of Surgery, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA; The Liver Center, University of California San Francisco, San Francisco, CA 94143; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine, University of California San Francisco, San Francisco, CA 94143, USA. Electronic address:

Biliary atresia is a progressive neonatal cholangiopathy that leads to liver failure. Characterized by inflammation-mediated liver injury, the immune system plays a critical role in the pathogenesis of this disease. Though several types of immune cells and mediators have been implicated in animal models of biliary atresia, emerging literature reflects the complex interplay of components of the immune response that contributes to disease progression in humans.

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Developments in basic stem cell biology have paved the way for technology translation in human medicine. An exciting prospective use of stem cells is the ex vivo generation of hepatic and pancreatic endocrine cells for biomedical applications. This includes creating novel models 'in a dish' and developing therapeutic strategies for complex diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD) and diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!