Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chimeric antigen receptor (CAR) T-cell adoptive therapy is set to transform the treatment of a rapidly expanding range of malignancies. Although the activation process of normal T cells is well characterized, comparatively little is known about the activation of cells via the CAR. Here we have used flow cytometry together with single-cell transcriptome profiling to characterize the starting material (peripheral blood mononuclear cells) and CAR therapeutic products of 3 healthy donors in the presence and absence of antigen-specific stimulation. Analysis of 53,191 single-cell transcriptomes showed APRIL-based CAR products to contain several subpopulations of cells, with cellular composition reproducible from donor to donor, and all major cellular subsets compatible with CAR expression. Only 50% of CAR-expressing cells displayed transcriptional changes upon CAR-specific antigen exposure. The resulting molecular signature for CAR T-cell activation provides a rich resource for future dissection of underlying mechanisms. Targeted data interrogation also revealed that a small proportion of antigen-responding CAR-expressing cells displayed an exhaustion signature, with both known markers and genes not previously associated with T-cell exhaustion. Comprehensive single-cell transcriptomic analysis thus represents a powerful way to guide the assessment and optimization of clinical-grade CAR-T-cells, and inform future research into the underlying molecular processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801130 | PMC |
http://dx.doi.org/10.1080/2162402X.2020.1866287 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!