Linac-based STereotactic Arrhythmia Radioablation (STAR) is a safety and effective approach for selected patients with ventricular arrhythmias.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7813061PMC
http://dx.doi.org/10.1002/ccr3.3530DOI Listing

Publication Analysis

Top Keywords

linac-based stereotactic
8
stereotactic arrhythmia
8
arrhythmia radioablation
8
radioablation star
8
star ventricular
4
ventricular tachycardia
4
tachycardia case
4
case report
4
report literature
4
literature review
4

Similar Publications

Purpose In linac-based stereotactic radiosurgery (SRS) utilizing a multileaf collimator (MLC) for brain metastases (BMs), a volumetric-modulated arc (VMA) technique is indispensable for generating a suitable dose distribution with efficient planning and delivery. However, the optimal calculation grid spacing (GS) and statistical uncertainty (SU) of the Monte Carlo algorithm for VMA optimization have yet to be determined. This planning study aimed to examine the impacts of GS and GU settings on VMA-based SRS planning and to find the optimal combination for templating.

View Article and Find Full Text PDF

Introduction: Brain arteriovenous malformations (AVM) are complex vascular pathologies with a significant risk of hemorrhage. Stereotactic radiosurgery (SRS) is an effective treatment modality for AVM, initially popularized on the Gamma Knife (Elekta AB, Stockholm, Sweden) platform, and now benefits from the modern advances in linear accelerator (LINAC)-based platforms. This study evaluates the outcomes of LINAC-based SRS/hypofractionated stereotactic radiotherapy (hFSRT) for cerebral AVMs.

View Article and Find Full Text PDF

Purpose: Uveal melanoma (UM) represents the most prevalent and aggressive intraocular malignancy in adults. This study examined the outcomes of patients diagnosed with high-risk UM who underwent fractionated stereotactic radiosurgery (fSRS) treatment utilizing a novel Linear Accelerator (LINAC)-based frameless technique.

Design: Retrospective, interventional case series.

View Article and Find Full Text PDF

Advancements in radiotherapy technology now enable the delivery of ablative doses to targets in the upper urinary tract, including primary renal cell carcinoma (RCC) or upper tract urothelial carcinomas (UTUC), and secondary involvement by other histologies. Magnetic resonance imaging-guided linear accelerators (MR-Linacs) have shown promise to further improve the precision and adaptability of stereotactic body radiotherapy (SBRT). This single-institution retrospective study analyzed 34 patients (31 with upper urinary tract non-metastatic primaries [RCC or UTUC] and 3 with metastases of non-genitourinary histology) who received SBRT from August 2020 through September 2024 using a 1.

View Article and Find Full Text PDF

Introduction: Non-invasive frameless systems have paved its way for stereotactic radiotherapy treatments compared to gold standard invasive rigid frame-based systems as they are comfortable to patients, do not have risk of pain, bleeding, infection, frame slippage and have similar treatment efficacy.

Aim And Objective: To estimate immobilisation accuracy (interfraction and intrafraction) and PTV margins with double shell positioning system (DSPS) using daily image guidance for stereotactic radiotherapy in patients with brain tumors.

Materials And Method: A prospective study was done in 19 cranial tumor patients with KPS ≥70, immobilized by the DSPS with mouth bite and treated with LINAC based image guided stereotactic radiotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!