Melittin Ameliorates Endotoxin-Induced Acute Kidney Injury by Inhibiting Inflammation, Oxidative Stress, and Cell Death in Mice.

Oxid Med Cell Longev

Department of Internal Medicine, School of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea.

Published: September 2021

Sepsis-related acute kidney injury (AKI) is a worldwide health problem, and its pathogenesis involves multiple pathways. Lipopolysaccharide (LPS) is an endotoxin that induces systemic inflammatory responses. Melittin, a main constituent of bee venom, exerts several biological activities such as antioxidant, anti-inflammatory, and antiapoptotic actions. However, whether melittin protects against endotoxin-induced AKI remains undetermined. Here, we aimed to examine the potential action of melittin on LPS-induced renal injury and explore the mechanisms. We showed that acute renal failure and structural damage after injection of LPS were markedly attenuated by administration of melittin. The peptide also suppressed expression of markers of direct tubular damage in kidneys of the LPS-treated mice. Mechanistically, melittin reduced systemic and renal levels of cytokines and inhibited renal accumulation of immune cells with concomitant suppression of nuclear factor kappa-B pathway. Increased amounts of lipid peroxidation products after LPS treatment were largely decreased by melittin. Additionally, the peptide decreased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 and enhanced nuclear factor erythroid-2-related factor 2-mediated antioxidant defenses. Moreover, melittin inhibited apoptotic and necroptotic cell death after LPS treatment. Lastly, we showed that melittin improved the survival rate of LPS-injected mice. These results suggest that melittin ameliorates endotoxin-induced AKI and mortality through inhibiting inflammation, oxidative injury, and apoptotic and necroptotic death of tubular epithelial cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7803412PMC
http://dx.doi.org/10.1155/2021/8843051DOI Listing

Publication Analysis

Top Keywords

melittin
10
melittin ameliorates
8
ameliorates endotoxin-induced
8
acute kidney
8
kidney injury
8
inhibiting inflammation
8
inflammation oxidative
8
cell death
8
endotoxin-induced aki
8
nuclear factor
8

Similar Publications

Bee venom (BV) and its main compound melittin (MLT) have antioxidant, anti-inflammatory, and anti-aging activities; however, very little research has been conducted on their effects on skin aging. In this study, a mouse skin aging model induced by D-galactose was constructed via subcutaneous injection into the scruff of the neck, and different doses of BV and MLT were used as interventions. The anti-aging effects and mechanisms of BV and MLT were explored by detecting the skin morphology and structure, and anti-aging-related factors and performing non-targeted metabolomics of mice.

View Article and Find Full Text PDF

Bee venom acupuncture (BVA) offers therapeutic potential for rheumatoid arthritis (RA) but faces challenges from pain and allergies linked to live bee stings. A key hurdle is melittin (Mel), bee venom's main anti-inflammatory component, which degrades rapidly when orally ingested, leading to decreased efficacy and increased toxicity. This study proposes a solution by encapsulating melittin in liposomes to enhance stability and lessen side effects, expanding its clinical applicability.

View Article and Find Full Text PDF

Aptamer-modified melittin micelles efficiently inhibit osteosarcoma deterioration by inducing immunogenic cell death.

Colloids Surf B Biointerfaces

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University. Electronic address:

Osteosarcoma (OS) is the most common primary bone malignancy characterized by deposition of an immature osteoid matrix. OS treatment has proven challenging because of the high risk of metastatic progression and recurrence after chemotherapy. Melittin (MLT) is recognized as a potential antitumor candidate to overcome chemotherapy resistance and provoke superior immunostimulatory effects.

View Article and Find Full Text PDF

Targeted Modulation of the Meningeal Lymphatic Reverse Pathway for Immunotherapy of Breast Cancer Brain Metastases.

ACS Nano

January 2025

School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China.

Treatment of tumor brain metastases remains challenging due to the ineffectiveness of drugs in crossing the blood-brain barrier (BBB). Here, we proposed a potential strategy to target and modulate the meningeal lymphatic system for immunotherapy of breast cancer brain metastases (BCBM) through peripheral administration. CT/fluorescence dual-modality imaging demonstrated that the phospholipid nanoprobe (α-PLNPs) through intracisternal magna injection effectively labeled and long-range tracked the meningeal lymphatic pathway from meningeal lymphatic vessels (MLVs) to periphery drainage cervical lymph nodes (CLNs).

View Article and Find Full Text PDF

Background: Bee venom consists of more than 50 % melittin (MLT), which has anti-cancer, anti-inflammatory, and antimicrobial properties. Bee venom also contains toxic components such as phospholipase A2 (PLA2) and hyaluronidase (HYA), which cause allergic reactions, so the toxic components must be removed to use MLT. In previous studies, analytical methods were used to separate MLT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!