Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
gene testing is a difficult, expensive, and time-consuming test which requires excessive work load. The identification of the gene mutations is significantly important in the selection of treatment and the risk of secondary cancer. We aimed to develop an algorithm considering all the clinical, demographic, and genetic features of patients for identifying the negativity in the present study. An experimental dataset was created with the collection of the all clinical, demographic, and genetic features of breast cancer patients for 20 years. This dataset consisted of 125 features of 2070 high-risk breast cancer patients. All data were numeralized and normalized for detection of the negativity in the machine learning algorithm. The performance of the algorithm was identified by studying the machine learning model with the test data. nearest neighbours (KNN) and decision tree (DT) accuracy rates of 9 features involving Dataset 2 were found to be the most effective. The removal of the unnecessary data in the dataset by reducing the number of features was shown to increase the accuracy rate of algorithm compared with the DT. negativity was identified without performing the gene test with 92.88% accuracy within minutes in high-risk breast cancer patients with this algorithm, and the test associated result waiting stress, time, and money loss were prevented. That algorithm is suggested be useful in fast performing of the treatment plans of patients and accurately in addition to speeding up the clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787793 | PMC |
http://dx.doi.org/10.1155/2020/8594090 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!