In this work, geochemical and microbiological studies were performed at kudurs in the southeastern part of the Sikhote-Alin mountain range and in the Sikhote-Alin Nature Reserve located in Primorsky Krai, Russia. It was found that the earth material eaten by wild animals in both sites is represented by clay-zeolite tuffs of dacite-rhyolite composition. In the earth material, Na is predominant in bioavailable macronutrients and Zn, light lanthanides, and Y in trace elements. Microbiological studies of geophagic earths revealed a wide range of heterotrophic and autotrophic aerobes and anaerobes involved in the conversion of carbon, nitrogen, and sulfur. Iron- and manganese-oxidizing bacteria and silicate bacteria were identified as well. The isolated pure cultures of heterotrophic bacteria were represented mainly by Gram-positive spore-forming large rods of sp. and Gram-negative heterotrophic aerobic and facultative anaerobic microorganisms sp. and , which oxidize iron and reduce sulfate. The ability of the bacteria to reduce sulfates is shown for the first time. According to the literature, the isolated microorganisms are able to actively extract rare earth elements from earth materials, transforming them from the bioinert state to a state accessible to herbivorous mammals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7803285 | PMC |
http://dx.doi.org/10.1155/2020/8811047 | DOI Listing |
Bull Environ Contam Toxicol
January 2025
School of Mathematics and Physics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China.
This study focuses on the composition and sources of dissolved organic matter (DOM) in the Fancun Reservoir, located in Ningguo City, Anhui Province, China. The investigation was conducted by analyzing the spectral characteristics of DOM using UV-Vis absorption spectra and fluorescence spectroscopy. The humic substances were dominated by fulvic acid, with an average DOM concentration of 30.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
Thermochromic smart windows effectively reduce the energy consumption for buildings through passive light modulation including the transmission of visible (T) and near-infrared (T) light, and the emissivity of mid-infrared (ε) light in response to ambient temperature change. However, thermochromic windows that maintain high T while modulating T and ε simultaneously are highly desirable but still challenging. Here, we develop a thermochromic smart window based on a two-way shape memory polymer to enable reversible transformation and achieve T modulation of 44.
View Article and Find Full Text PDFFungal Syst Evol
December 2024
Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
Novel species of fungi described in this study include those from various countries as follows: , from accumulated snow sediment sample. , on leaf spots of . , on submerged decaying wood in sea water, on , as endophyte from healthy leaves of .
View Article and Find Full Text PDFChem Mater
January 2025
Graduate School of Biomedical Science and Engineering, Koç University, Istanbul 34450, Türkiye.
AgBiS nanocrystals (NCs), composed of nontoxic, earth-abundant materials and exhibiting an exceptionally high absorption coefficient from visible to near-infrared (>10 cm), hold promise for photovoltaics but have lack of photoluminescence (PL) due to intrinsic nonradiative recombination and challenging shell growth. In this study, we reported a facile wet-chemical approach for the epitaxial growth of ZnS shell on AgBiS NCs, which triggered the observation of PL emission in the near-infrared (764 nm). Since high quality of the core is critical for epitaxial shell growth, we first obtained rock-salt structured AgBiS NCs with high crystallinity, nearly spherical shape and monodisperse size distribution (<6%) via a dual-ligand approach reacting Ag-Bi oleate with elemental sulfur in oleylamine.
View Article and Find Full Text PDFACS Omega
January 2025
Postgraduate Program in Chemistry, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa 58051-900, Brazil.
Cellulose, the most abundant biopolymer on Earth, is biodegradable, nontoxic, and derived from renewable sources. Its properties and applications depend on the extraction methods and sources, making plant waste reuse a sustainable production option. This study aimed to assess the potential of cowpea pod skin () as a source of microcellulose (CPMC) using a chemical-mechanical process involving ball milling combined with acid hydrolysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!