Lung cancer is still the leading cause of cancer-related death worldwide. Of lung cancer, lung adenocarcinoma (LUAD) is the most common subtype. Most patients with LUAD would develop into metastasis, which limits the available treatment. Targeted therapy and immunotherapy provided options for those advanced patients. But they also broached up challenges to identify the appropriate patients. This study aims to reveal the landscapes of genomic mutations in primary and metastatic LUAD and their actionability. This study enrolled 636 patients with LUAD, of whom 85 and 551 were from patients with and without metastasis, respectively. Next-generation sequencing technology was used to retrieve their genomic information. Genomic mutations including short nucleotide variation, long variation, copy number variations, and fusions were called. The corresponding actionability was revealed. A comparison of genomic mutations and actionability between primary and metastatic LUAD was performed. In primary tumors, BRCA2 and FAT3 were significantly mutated in older patients; while in metastases, ALK and NOTCH2 were significantly mutated in younger patients. Primary tumors in male patients were significantly mutated in LRP1B and KRAS. Compared to primary tumors, metastases harbored less short nucleotide variations but more copy number variations and fusions. In metastases, chromosome 1 and chromosome 9 had less short nucleotide variations and more CNV than in primary tumors. Genomic variations of activated dendritic cells were more frequently mutated in metastases. EGFR genomic variations were negatively associated with PD-L1 and TMB. Patients with EGFR inhibitor treatment tend to have lower PD-L1 expression. The revealed discrepancy between primary and metastatic lung cancer could help guide the treatment strategies and the development of novel drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787720 | PMC |
http://dx.doi.org/10.1155/2020/6615575 | DOI Listing |
Int J Colorectal Dis
January 2025
Internal Medicine, Jilin Cancer Hospital, Changchun, China.
Purpose: This phase II study is designed to evaluate the combination therapy involving suvemcitug and envafolimab with FOLFIRI in microsatellite-stable or mismatch repair-proficient (MSS/pMMR) colorectal cancer (CRC) in the second-line treatment setting.
Methods: This study is a non-randomized, open-label prospective study comprising multiple cohorts (NCT05148195). Here, we only report the data from the CRC cohort.
J Virol
January 2025
Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands.
Human metapneumovirus (HMPV) is an important causative agent of respiratory tract disease. Fundamental knowledge of the interaction between HMPV and the innate immune system could lead to the design of novel antiviral therapies. Previously, we demonstrated that HMPV M2-2 deletion mutants had hypermutated genomes and contained defective interfering particles (DIs), which are potent inducers of the IFN response.
View Article and Find Full Text PDFElife
January 2025
The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.
encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: X-linked intellectual disability (XLID) is a genetically heterogeneous disorder that results in cognitive impairment and developmental delays. Mutations in the KDM5C gene have been identified as a causative factor in XLID. This study aimed to identify novel variants associated with XLID and to investigate the clinical and genetic characteristics of XLID patients with mutations in the KDM5C gene.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea.
Background: Leber congenital amaurosis (LCA), the most severe form of inherited retinal dystrophy, is a rare, heterogeneous, genetic eye disease associated with severe congenital visual impairment. RPE65, one of the causative genes for LCA, encodes retinoid isomerohydrolase, an enzyme that plays a critical role in regenerating visual pigment in photoreceptor cells.
Methods: Exome sequencing (ES) was performed on a patient with suspected LCA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!