The management of end-of-life tires (ELT) waste gains importance in aspect of possible environmental and economic issues so the waste recycling becomes unavoidable. This study describes the fabrication and characterization of a new phase changing material (PCM)/ELT microcomposites that could be used in thermal energy storage. Paraffin together with the 4 fatty acids and ELT rubber powder are used as PCMs and as the supporting material, respectively. Paraffin/ELT composites are fabricated, as well, by the vacuum impregnation method in order to investigate the effect of the preparation method. The thermal, morphological, and chemical properties of the prepared PCM/ELT rubber microcomposites are determined with differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and FTIR, respectively. Additionally, the effects of the PCM amount on the composite materials are investigated. As a result of DSC results, the melting temperature and latent heat of the paraffin/ELT rubber microcomposites are determined as 37.2 °C and 80.79 J/g for direct impregnation method and 36.8 °C and 80.69 J/g for vacuum impregnation method, respectively. Based on the findings of this study, it can be claimed that PCM/ELT rubber microcomposites can be used as energy-saving materials in thermal energy storage applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671213 | PMC |
http://dx.doi.org/10.3906/kim-1911-23 | DOI Listing |
Nat Commun
January 2025
School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.
Te-free thermoelectrics have garnered significant interest due to their immense thermoelectric potential and low cost. However, most Te-free thermoelectrics have relatively low performance because of the strong electrical and thermal transport conflicts and unsatisfactory compatibility of interfaces between device materials. Here, we develop lattice defect engineering through Cu doping to realize a record-high figure of merit of ~1.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
January 2025
Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China. Electronic address:
Temperature is closely linked to the life history of organisms, and thus thermoception is an important sensory mechanism. Transient receptor potential (TRP) ion channels are the key mediators of thermal sensation. In this study, we analyzed the sequence characteristics of TRPs in gecko Hemiphyllodactylus yunnanensis and compared the phylogenetic relationships of TRP family members among different Squamata species.
View Article and Find Full Text PDFJ Therm Biol
January 2025
Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610000, China.
Maintaining an optimal indoor thermal environment is crucial for enhancing the welfare and productivity of livestock in intensive breeding farms. This paper investigated the application of a combined geothermal heat pump with a precision air supply (GHP-PAS) system for cooling dairy cows on a dairy farm. The effectiveness of the GHP-PAS system in mitigating heat stress in lactating dairy cattle, along with its energy performance and local cooling efficiency in the free stalls were evaluated.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Polymer Science and Engineering, Key Laboratory of High-Performance Polymer Materials and Technology of MOE, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, China.
Overheating remains a major barrier to chip miniaturization, leading to device malfunction. Addressing the urgent need for thermal management promotes the development of solid-state electrocaloric cooling. However, enhancing passive heat dissipation through two-dimensional materials in electrocaloric polymers typically compromises the electrocaloric effect.
View Article and Find Full Text PDFChempluschem
January 2025
China University of Mining and Technology, School of electrical and power engineering, NO.1, Daxue Road, 221116, Xuzhou, CHINA.
The mining industry produces a large amount of industrial solid waste every year. Among them, fly ash (FA), slag and tailings are the three main solid wastes, which can cause soil pollution, air pollution, water pollution and serious threat to human health if not handled properly. At present, the treatment methods of industrial solid waste mainly include direct landfill, recovery of high-value components, production of construction materials, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!