Circulating microRNAs (miRNAs) have emerged as promising cancer biomarkers because their concentration profiles in body fluids are associated with the type and clinical stage of cancer. For multiplex miRNA detection, a novel surface-functionalized power-free microfluidic chip (SF-PF microchip) has been developed. The inner surface of the SF-PF microchip microchannels was functionalized via electron beam-induced graft polymerization and immobilization of capture probe DNAs. Simultaneous and specific duplex miRNA detection was achieved on the line-type SF-PF microchip with detection limits of 19.1 and 47.6 nmol L for hsa-miR-16 and hsa-miR-500a-3p, respectively. Moreover, simultaneous and specific triplex miRNA detection was achieved on the stripe-type SF-PF microchip. The sample volume required for this microchip was 0.5 μL, and the time required for detection was 17 min. These results indicate that up to six types of miRNAs could be detected without compromising the advantages of the previous SF-PF microchips for cancer point-of-care testing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2116/analsci.20SCP17 | DOI Listing |
Anal Sci
May 2021
Department of Materials Science & Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan.
Circulating microRNAs (miRNAs) have emerged as promising cancer biomarkers because their concentration profiles in body fluids are associated with the type and clinical stage of cancer. For multiplex miRNA detection, a novel surface-functionalized power-free microfluidic chip (SF-PF microchip) has been developed. The inner surface of the SF-PF microchip microchannels was functionalized via electron beam-induced graft polymerization and immobilization of capture probe DNAs.
View Article and Find Full Text PDFACS Omega
October 2017
Department of Materials Science and Technology and Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.
Extracellular vesicles (EVs) are promising novel cancer biomarkers. However, rapid and easy analysis of EVs is challenging because conventional detection methods require large sample volumes and long detection times. Microchip-based analytical systems have particularly attracted attention for development of point-of-care (POC) diagnostics.
View Article and Find Full Text PDFAnal Sci
July 2018
Department of Materials Science and Technology, Tokyo University of Science.
We propose an easy microchannel surface functionalization method for a poly(dimethylsiloxane) (PDMS) microchip that utilizes electron beam-induced graft polymerization (EIGP) as a platform for microchip-based biomarker analysis. Unlike other grafting techniques, EIGP enables rapid surface modification of PDMS without initiator immobilization. The grafted microchip is preservable, and can be easily functionalized for versatile applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!