Data-driven modeling and forecasting of COVID-19 outbreak for public policy making.

ISA Trans

Department of Mathematics, Institut Teknologi Bandung, Indonesia.

Published: May 2022

This paper presents a data-driven approach for COVID-19 modeling and forecasting, which can be used by public policy and decision makers to control the outbreak through Non-Pharmaceutical Interventions (NPI). First, we apply an extended Kalman filter (EKF) to a discrete-time stochastic augmented compartmental model to estimate the time-varying effective reproduction number (R). We use daily confirmed cases, active cases, recovered cases, deceased cases, Case-Fatality-Rate (CFR), and infectious time as inputs for the model. Furthermore, we define a Transmission Index (TI) as a ratio between the instantaneous and the maximum value of the effective reproduction number. The value of TI indicates the "effectiveness" of the disease transmission from a contact between a susceptible and an infectious individual in the presence of current measures, such as physical distancing and lock-down, relative to a normal condition. Based on the value of TI, we forecast different scenarios to see the effect of relaxing and tightening public measures. Case studies in three countries are provided to show the practicability of our approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816594PMC
http://dx.doi.org/10.1016/j.isatra.2021.01.028DOI Listing

Publication Analysis

Top Keywords

modeling forecasting
8
public policy
8
effective reproduction
8
reproduction number
8
data-driven modeling
4
forecasting covid-19
4
covid-19 outbreak
4
outbreak public
4
policy making
4
making paper
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!