Dynein light chain (DLC) proteins are an important component of dynein complexes, which are widely distributed in plants and animals and involved in a variety of cellular processes. The functions of DLC genes in plant chilling stress remain unclear. In this study, we isolated a DLC gene from tomato, designated SlLC6D. Promoter analysis revealed many cis-elements involved in abiotic stress in the SlLC6D promoter. Expression of SlLC6D was induced by heat and salt stress, and inhibited by polyethylene glycol and chilling stress. Knockdown of SlLC6D in tomato exhibited low relative electrolyte leakage, malondialdehyde content, and reactive oxygen species (ROS) accumulation under chilling stress. The content of proline and activities of superoxide dismutase and peroxidase in knockdown lines were higher than in the wild type and overexpression lines during chilling stress. The high transcript abundances of three cold-responsive genes were detected in knockdown lines in response to chilling stress. Seedling growth of knockdown lines was significantly higher than that of the wild type and overexpression lines under chilling stress. These results suggest that SlLC6D is a negative regulator of chilling stress tolerance, possibly by regulating ROS contents and the ICE1-CBF-COR pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2020.110753 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!