Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Postharvest diseases are a limiting factor in the storage of fresh blueberries. Gray mold caused by and Alternaria rot caused by spp. are important postharvest diseases in blueberries grown in California. Control of these fungal pathogens is generally dependent on preharvest sprays of synthetic fungicides, but in California multiple fungicide resistance has already developed in those pathogens, leading to the failure of disease control. Therefore, alternatives to synthetic fungicides are needed for the control of postharvest diseases. Peroxyacetic acid (PAA) is a disinfectant agent that poses low risk to human health. In this study, we evaluated the effects of postharvest use of PAA at 24 µl liter and 85 µl liter on fruit decay caused by fungal pathogens and quality of stored blueberry fruit. PAA treatment was applied to four cultivars over three seasons using two methods, dipping or spraying. Dipping blueberries compared with spraying them with PAA and its application at 85 µl liter were the most effective treatments. For example, when applied to 'Snowchaser' blueberries, this combination reduced naturally occurring decay after 4 weeks of storage at 0 to 1°C from 14.3% among water-treated controls to 2.7% in 2018, and from 25.7% among water-treated controls to 8.6% in 2020. In general, PAA did not adversely affect fruit quality or sensory quality of blueberries. Postharvest use of PAA appears to be a promising means to reduce postharvest decay of blueberries. To reliably obtain an acceptable level of disease control, the best use of PAA may be in combination with other practices rather than using it alone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-10-20-2310-RE | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!