Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To evaluate the wear resistance of a recently developed three-dimensional (3D) printed denture teeth resin compared to three commercially available prefabricated denture teeth.
Materials And Methods: A total of 88 maxillary first molar denture teeth were evaluated: C (Classic; Dentsply Sirona, York, PA), DCL (SR Postaris DCL; Ivoclar Vivadent, Schaan, Liechtenstein), IPN (Portrait IPN; Dentsply Sirona, York, PA), and F (Denture Teeth A2 Resin 1 L; Formlabs, Somerville, MA). The 3D printed denture tooth specimens were fabricated from a methacrylate-based photopolymerizing resin using stereolithography (SLA). Denture teeth were subjected to a three-body wear test with a poly(methylmethacrylate) (PMMA) abrasive slurry. A Leinfelder-style four station wear apparatus with custom bullet-shaped milled zirconia styli was utilized with a load force of 36-40 N at 1.7 Hz for 200,000 cycles. Maximum depth of wear was measured using a lab grade scanner and analyzing software program. Data were analyzed using a one-way ANOVA followed by the Tukey's Multiple Comparisons post hoc test (α = 0.05).
Results: A statistically significant difference in depth of wear was found between denture tooth materials (p < 0.001). The mean vertical depth of wear for the 3D printed denture teeth (0.016 ± 0.010 mm) was statistically significantly less than the prefabricated denture teeth. The highly cross-linked denture teeth, DCL (0.036 ± 0.011 mm) and IPN (0.035 ± 0.014 mm), exhibited statistically significantly less wear than the conventional acrylic denture teeth. The conventional acrylic denture teeth demonstrated the greatest wear (0.058 ± 0.014 mm). No significant difference in depth of wear was found between DCL and IPN (p > 0.001).
Conclusions: Denture tooth material significantly influences the depth of wear. The 3D printed denture teeth demonstrated superior wear resistance compared to the commercially available prefabricated denture teeth when opposed to zirconia. Denture teeth fabricated with SLA technology may have a promising future in prosthetic dentistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jopr.13339 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!