The detection of atypical and sometimes aggressive or tumefactive demyelinating lesions of the central nervous system often poses difficulties in the differential diagnosis. The clinical presentation is generally aspecific, related to the location and similar to a number of different lesions, including neoplasms and other intracranial lesions with mass effect. CSF analysis may also be inconclusive, especially for lesions presenting as a single mass at onset. As a consequence, a brain biopsy is frequently performed for characterization. Advanced MRI imaging plays an important role in directing the diagnosis, reducing the rate of unnecessary biopsies and allowing a prompt start of therapy that is often crucial, especially in the case of infratentorial lesions. In this review, the main pattern of presentation of atypical inflammatory demyelinating diseases is discussed, with particular attention on the differential diagnosis and how to adequately define the correct etiology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11547-021-01334-yDOI Listing

Publication Analysis

Top Keywords

demyelinating lesions
8
lesions central
8
central nervous
8
nervous system
8
differential diagnosis
8
lesions
6
differential imaging
4
imaging atypical
4
atypical demyelinating
4
system detection
4

Similar Publications

Olfactory dysfunction (OD) is an underestimated symptom in multiple sclerosis (MS). Multiple factors may play a role in the OD reported by MS patients, such as ongoing inflammation in the central nervous system (CNS), damage to the olfactory bulbs due to demyelination, and the presence of plaques in brain areas associated with the olfactory system. Indeed, neuroimaging studies in MS have shown a clear association of the OD with the number and activity of MS-related plaques in frontal and temporal brain regions.

View Article and Find Full Text PDF

Forecasting the progression of the disease in the early inflammatory stage of the most prevalent type of multiple sclerosis (MS), referred to as relapsing-remitting multiple sclerosis (RRMS), is essential for making prompt treatment modifications, aimed to reduce clinical relapses and disability. In total, 58 patients with RRMS, having an Expanded Disability Status Scale (EDSS) score less than 4, were included in this study. Baseline magnetic resonance imaging (MRI) was performed, and brain and spinal cord lesions were evaluated.

View Article and Find Full Text PDF

Deep learning MRI models for the differential diagnosis of tumefactive demyelination versus -wildtype glioblastoma.

AJNR Am J Neuroradiol

January 2025

From the Department of Radiology (GMC, MM, YN, BJE), Department of Quantitative Health Sciences (PAD, MLK, JEEP), Department of Neurology (CBM, JAS, MWR, FSG, HKP, DHL, WOT), Department of Neurosurgery (TCB), Department of Laboratory Medicine and Pathology (RBJ), and Center for Multiple Sclerosis and Autoimmune Neurology (WOT), Mayo Clinic, Rochester, MN, USA; Dell Medical School (MFE), University of Texas, Austin, TX, USA.

Background And Purpose: Diagnosis of tumefactive demyelination can be challenging. The diagnosis of indeterminate brain lesions on MRI often requires tissue confirmation via brain biopsy. Noninvasive methods for accurate diagnosis of tumor and non-tumor etiologies allows for tailored therapy, optimal tumor control, and a reduced risk of iatrogenic morbidity and mortality.

View Article and Find Full Text PDF

In multiple sclerosis (MS), microglia and macrophages within the central nervous system (CNS) play an important role in determining the balance among demyelination, neurodegeneration, and myelin repair. Phagocytic and regenerative functions of these CNS innate immune cells support remyelination, whereas chronic and maladaptive inflammatory activation promotes lesion expansion and disability, particularly in the progressive forms of MS. No currently approved drugs convincingly target microglia and macrophages within the CNS, contributing to the lack of therapies aimed at promoting remyelination and slowing disease progression for individuals with MS.

View Article and Find Full Text PDF

Radiotherapy (RT) remains crucial in treating both primary and metastatic central nervous system cancer. Despite advancements in modern techniques that mitigate some toxic adverse effects, magnetic resonance imaging (MRI) scans still reveal a wide range of radiation-induced changes. Radiation can adversely affect neuroglial cells and their precursors, potentially triggering a demyelinating pattern similar to multiple sclerosis (MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!