From 2015 to 2017, China took strong air pollution control measures (APCMs) for coal-fired industrial boilers (CFIBs), including eliminating CFIBs, promoting clean fuels, and updating air pollution control devices (APCDs). Based on the industrial boiler's emission inventory of air pollutants, measure-specific emission reductions from 2015 to 2017 was estimated in this study. Besides, the measure-specific environmental benefits of unit emission reduction on concentration and deposition flux were systematically evaluated by WRF-CMAQ model. The total emission reductions for CFIBs of PM, PM, SO, NOx, Hg, As, Cd, Cr and Pb from 2015 to 2017 were 1.2 Tg, 0.53 Tg, 2.06 Tg, 0.65 Tg, 37.6 tons, 179.5 tons, 17.9 tons, 1029.3 tons and 676.0 tons, respectively. Based on meteorological fields in 2017, their corresponding national population-weighted mitigated concentration was 1.8 μg m, 1.3 μg m, 3.6 μg m, 0.6 μg m (NO), 0.076 ng m, 0.37 ng m, 0.04 ng m, 1.83 ng m and 2.3 ng m, respectively. Updating APCDs was identified as the major measure to reduce air pollutants (except NO), accounting for more than 35% of emission reductions and mitigated concentration. Moreover, elimination was the major NOx reduction method, contributing to 55% of NOx emission reductions. The promoting of fuels, including replacement of CFIBs with gas-fired and biomass-fired industrial boilers, had higher environmental benefits for unit emission reductions. Furthermore, there were still more than 43,000 CFIBs with the capacity <10 t h, accounting for 14%, 21%, and 11% of total PM, SO and NO emissions for CFIBs in 2017; meanwhile, 20% and 59% of CFIBs did not install flue gas desulfurization and denitrification devices, respectively. Therefore, it is recommended to give priority to phase out CFIBs with capacity <10 t h and APCDs updating for larger capacity CFIBs in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2021.116470 | DOI Listing |
Int J Epidemiol
December 2024
School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR, USA.
Background: Billions of dollars have been spent implementing regulations to reduce traffic-related air pollution (TRAP) from exhaust pipe emissions. However, few health studies have evaluated the change in TRAP emissions and associations with infant health outcomes. We hypothesize that the magnitude of association between vehicle exposure measures and adverse birth outcomes has decreased over time, parallelling regulatory improvements in exhaust pipe emissions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Archaeology, University of Oxford, Oxford OX1 4PG, United Kingdom.
Ancient texts and archaeological evidence indicate substantial lead exposure during antiquity that potentially impacted human health. Although lead exposure routes were many and included the use of glazed tablewares, paints, cosmetics, and even intentional ingestion, the most significant for the nonelite, rural majority of the population may have been through background air pollution from mining and smelting of silver and lead ores that underpinned the Roman economy. Here, we determined potential health effects of this air pollution using Arctic ice core measurements of Roman-era lead pollution, atmospheric modeling, and modern epidemiology-based relationships between air concentrations, blood lead levels (BLLs), and cognitive decline.
View Article and Find Full Text PDFPLoS One
January 2025
School of Civil Engineering and Transportation, Weifang University, Weifang, China.
As the foundation and cornerstone of the digital economy, digital infrastructure construction is an indispensable engine for realizing China's energy-saving and emission-reduction, innovation-driven and low-carbon transformation and development. Investigating the carbon unlocking effect of digital infrastructure construction might hasten the achievement of the dual-carbon goal and the "win-win" scenario of environmental protection and economic growth. However, there is still a gap between whether and how digital infrastructure construction can break the carbon lock-in (CLI).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
As primary air pollutants from fossil fuel combustion, the excess emission of nitric oxides (NO) results in a series of atmospheric environmental issues. Although the selective catalytic reduction technology has been confirmed to be effective for NO removal, green purification and value-added conversion of NO under ambient conditions are still facing great challenges, especially for nitrogen resource recovery. To address that, photo-/electrocatalysis technology offers sustainable routes for efficient NO purification and upcycling under ambient temperature and pressure, which has received considerable attention from scientific communities.
View Article and Find Full Text PDFCarbon Capture Sci Technol
December 2024
Department of Engineering, King's College London, WC2R 2LS, UK.
Meeting the needs of a growing population calls for a change from linear production systems that exacerbate the depletion of finite natural resources and the emission of environmental pollutants. These linear production systems have resulted in the human-driven perturbation of the Earth's natural biogeochemical cycles and the transgression of environmentally safe operating limits. One solution that can help alleviate the environmental issues associated both with resource stress and harmful emissions is resource recovery from waste.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!