A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Remobilization and hypoxia-dependent migration of phosphorus at the coastal sediment-water interface. | LitMetric

Remobilization and hypoxia-dependent migration of phosphorus at the coastal sediment-water interface.

J Hazard Mater

College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.

Published: June 2021

Sediment internal phosphorus (P) loading can be tightly associated with overlying water hypoxia. However, the effects of long-term seasonal hypoxia on the geochemical transition of P in P-poor coastal sediment and how this transition is linked to the early diagenesis of iron (Fe), sulfur (S) and carbon are still poorly understood. Here, we conducted a one-year monthly field investigation to study the (im)mobilization and migration of P among coastal sediment, porewater and overlying water. The coherent distribution of soluble Fe and mobile P and decoupled distribution of labile S (soluble sulfide) and mobile P in the depth profiles indicate that the redox cycling of Fe (but not S) dominates P mobility. Nevertheless, the monthly variation in the porewater soluble reactive P (SRP) presented significant positive correlations with that of the overlying water SRP. This finding highlights that hypoxia-fueled SRP migration from overlying water rather than weak diagenetic P mobilization due to deficient organic matter and solid labile P is the crucial factor responsible for internal P mobility over long time scales. Although SRP tends to migrate from overlying water to porewater, the potential risk of sediment labile P remobilization and reliberation to the overlying water is considerable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.125078DOI Listing

Publication Analysis

Top Keywords

overlying water
24
coastal sediment
8
overlying
6
water
6
remobilization hypoxia-dependent
4
hypoxia-dependent migration
4
migration phosphorus
4
phosphorus coastal
4
coastal sediment-water
4
sediment-water interface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!