Lipid nanoparticles are increasingly used for drug and gene delivery, including the delivery of small interfering RNA (siRNA). Pulmonary delivery of drug molecules carried by lipid nanoparticles directly into the lung may improve the treatment of certain lung diseases. The present study was designed to test the feasibility of engineering aerosolizable dry powder of lipid nanoparticles by thin-film freeze-drying (TFFD). Solid lipid nanoparticles (SLNs) comprised of lecithin, cholesterol, and a lipid-polyethylene glycol conjugate were prepared by solvent evaporation. Dry powders of the SLNs were prepared by TFFD, spray drying, or conventional shelf freeze-drying. The physical and aerosol properties of the dry powders as well as the physical properties of the SLNs reconstituted from the dry powders were evaluated. The particle size, polydispersity index, and the zeta potential of the SLNs were preserved after they were subjected to TFFD and reconstitution, but not after they were subjected to conventional shelf freeze-drying and reconstitution, and the dry powder prepared by TFFD showed better aerosol performance properties than that prepared by spray drying. SLNs encapsulated with siRNA can also be successfully transformed into aerosolizable dry powder by TFFD, and subjecting the siRNA-encapsulated SLNs to TFFD did not negatively affect the function of the siRNA. It is concluded that TFFD represents a promising method to prepare aerosolizable dry powder of lipid nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.120215DOI Listing

Publication Analysis

Top Keywords

lipid nanoparticles
24
dry powder
16
aerosolizable dry
12
dry powders
12
solid lipid
8
thin-film freeze-drying
8
pulmonary delivery
8
powder lipid
8
prepared tffd
8
spray drying
8

Similar Publications

CD47 Knock-Out Using CRISPR-Cas9 RNA Lipid Nanocarriers Results in Reduced Mesenchymal Glioblastoma Growth In Vivo.

Adv Sci (Weinh)

January 2025

Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.

Immune checkpoint (ICP) blockade has shown limited effectiveness in glioblastoma (GBM), particularly in the mesenchymal subtype, where interactions between immune cells and glioblastoma cancer stem cells (GSCs) drive immunosuppression and therapy resistance. Tailoring ICPs specific to GSCs can enhance the antitumor immune response. This study proposes the use of lipid nanoparticles (LNPs) encapsulating CRISPR RNAs as an in vivo screening tool for ICPs in a syngeneic model of mesenchymal GSCs.

View Article and Find Full Text PDF

Muco-Penetrating Lipid Nanoparticles Having a Liquid Core for Enhanced Intranasal mRNA Delivery.

Adv Sci (Weinh)

January 2025

Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore.

Intranasal delivery of mRNA vaccines offers promising opportunities to combat airborne viruses like SARS-CoV-2 by provoking mucosal immunity, which not only defends against respiratory infection but also prevents contagious transmission. However, the development of nasal mRNA vaccines has been hampered by the lack of effective means to overcome the mucus barrier. Herein, ionizable lipid-incorporated liquid lipid nanoparticles (iLLNs) capable of delivering mRNA cargo across airway mucosa are designed.

View Article and Find Full Text PDF

Nanoparticles capable of dynamically reporting their structural integrity in real-time are a powerful tool to guide the design of drug delivery technologies. Lipid nanoparticles (LNPs) offer multiple important advantages for drug delivery, including stability, protection of active substances, and sustained release capabilities. However, tracking their structural integrity and dynamic behaviour in complex biological environments remains challenging.

View Article and Find Full Text PDF

The ionizable lipid component of lipid nanoparticle (LNP) formulations is essential for mRNA delivery by facilitating endosomal escape. Conventionally, these lipids are synthesized through complex, multistep chemical processes that are both time-consuming and require significant engineering. Furthermore, the development of new ionizable lipids is hindered by a limited understanding of the structure-activity relationships essential for effective mRNA delivery.

View Article and Find Full Text PDF

Neoantigen mRNA vaccines and AA receptor antagonism: A strategy to enhance T cell immunity.

Hum Vaccin Immunother

December 2025

Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.

Although neo-antigen mRNA vaccines are promising for personalized cancer therapy, their effectiveness is often limited by the immunosuppressive tumor microenvironment (TME). The adenosine AA receptor (AAR) inhibits dendritic cell (DC) function and weakens antitumor T cell responses through hypoxia-driven mechanisms within the TME. This review explores a novel strategy combining neo-antigen mRNA vaccines with AAR antagonists (AARi).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!