RING finger protein 6 (RNF6), a RING finger protein, has been identified as a potential tumor promoter in several cancers. However, the exact mechanism of RNF6 in cancer remains elusive. As in various diseases, RNF6 may be involved in regulating cell growth, cell proliferation, invasion, cell cycle progression, apoptosis and cell adhesion through E3 ligase-mediated ubiquitination. Thus, the research on RNF6 is mainly focused on the ubiquitination of RNF6 in recent years. This article summarizes the role of RNF6 ubiquitination in various physiological and pathological mechanisms, such as Akt/mTOR signaling pathway, Wnt/β-catenin pathway, RNF6/ERα/Bcl-xL axis, and provides knowledge and understanding for the treatment of diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2020.112396DOI Listing

Publication Analysis

Top Keywords

ring finger
8
finger protein
8
ubiquitination rnf6
8
rnf6
7
gene commander
4
commander trash
4
trash heap
4
heap transcriptional
4
transcriptional regulation
4
ubiquitination
4

Similar Publications

A and Extract Blend Attenuates Muscle Atrophy by Regulating Protein Metabolism and Antioxidant Activity.

J Med Food

December 2024

Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Republic of Korea.

Here, we investigated whether a mixture of and (1:3, KGC01CE) could suppress muscle atrophy in HO-induced C2C12 cells and dexamethasone-injected mice. Our results revealed that KGC01CE effectively safeguarded against HO-induced muscle atrophy in C2C12 cells compared with the same mixture at other ratios. We demonstrated that dexamethasone elicited oxidative stress in muscle tissue and decreased the grip strength and cross-sectional areas of muscle fibers; however, oral administration of KGC01CE (1:3) suppressed these dexamethasone-induced changes.

View Article and Find Full Text PDF

Bacterial transcription terminator, Rho is an RNA-dependent ATPase that terminates transcription. Several structures of pre-termination complexes of the Rho-transcription elongation complex (EC) revealed a static picture of components of the EC that come close to the nascent RNA-bound Rho, where many of the residues of EC reside ≤ 10 Å from the Rho residues. However, the in vitro-formed Rho-EC complexes do not reveal the in vivo Rho-EC dynamic interaction patterns during the termination process.

View Article and Find Full Text PDF

Fucosterol, a Phytosterol of Marine Algae, Attenuates Immobilization-Induced Skeletal Muscle Atrophy in C57BL/6J Mice.

Mar Drugs

December 2024

Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.

The objective of this study was to examine whether fucosterol, a phytosterol of marine algae, could ameliorate skeletal muscle atrophy in tumor necrosis factor-alpha (TNF-α)-treated C2C12 myotubes and in immobilization-induced C57BL/6J mice. Male C57BL6J mice were immobilized for 1 week to induce skeletal muscle atrophy. Following immobilization, the mice were administrated orally with saline or fucosterol (10 or 30 mg/kg/day) for 1 week.

View Article and Find Full Text PDF

Research on Multimodal Control Method for Prosthetic Hands Based on Visuo-Tactile and Arm Motion Measurement.

Biomimetics (Basel)

December 2024

Institute of Instrument Science and Engineering, Southeast University, Nanjing 210096, China.

The realization of hand function reengineering using a manipulator is a research hotspot in the field of robotics. In this paper, we propose a multimodal perception and control method for a robotic hand to assist the disabled. The movement of the human hand can be divided into two parts: the coordination of the posture of the fingers, and the coordination of the timing of grasping and releasing objects.

View Article and Find Full Text PDF

Unraveling EEG correlates of unimanual finger movements: insights from non-repetitive flexion and extension tasks.

J Neuroeng Rehabil

December 2024

Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.

Background: The loss of finger control in individuals with neuromuscular disorders significantly impacts their quality of life. Electroencephalography (EEG)-based brain-computer interfaces that actuate neuroprostheses directly via decoded motor intentions can help restore lost finger mobility. However, the extent to which finger movements exhibit distinct and decodable EEG correlates remains unresolved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!