The objective of this study was to evaluate the effects of the starch content of pre- and postpartum diets on productivity, plasma energy metabolites, and serum markers of inflammation of dairy cows during the calving transition period. Eighty-eight primiparous and multiparous cows were randomly assigned to pre- and postpartum dietary treatments balanced for parity and pretrial body condition score at d 28 ± 3 before expected calving date. Cows were fed either a control [Control; 14.0% starch, dry matter (DM) basis] or high-starch (High; 26.1% starch, DM basis) prepartum diet commencing 28 ± 3 d before expected calving date. Following calving, cows were fed either a high-fiber (HF; 33.8% neutral detergent fiber, 25.1% starch, DM basis) or high-starch (HS; 27.2% neutral detergent fiber, 32.8% starch, DM basis) postpartum diet for the first 20 ± 2 d following calving. Cows fed the High prepartum diet had greater DM intake (12.4 vs. 10.2 kg/d), plasma concentrations of insulin (1.72 vs. 14.2 ng/mL), glucose (68.1 vs. 65.0 mg/dL), and glucagon-like peptide-2 (0.41 vs. 0.32 ng/mL) before parturition, but increased plasma free fatty acid concentration (452 vs. 363 µEq/L) and milk fat yield (1.64 vs. 1.48 kg/d) after parturition. Cows fed the HS postpartum diet had lower plasma free fatty acid (372 vs. 442 µEq/L) and serum haptoglobin (0.46 vs. 0.70 mg/mL) concentrations over a 3-wk period after calving. In addition, there was a tendency for interaction between prepartum and postpartum diets for milk yield, where feeding the HS postpartum diet increased milk yield compared with the HF diet for cows fed the Control prepartum diet (40.8 vs. 37.9 kg/d) but not for cows fed the High prepartum diet. These results suggest that management efforts to minimize the change in diet fermentability during the calving transition by feeding the High prepartum diet, the HF postpartum diet, or both did not increase productivity of dairy cows but increased fat mobilization after calving. Our findings also suggest that feeding high-starch postpartum diets can decrease fat mobilization and serum indicators of systemic inflammation and increase milk production even with the transition from a low-starch prepartum diet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2020-19611 | DOI Listing |
Int J Biol Macromol
January 2025
State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China. Electronic address:
This study investigated the effects of rumen-degradable starch (RDS) on lactation performance, gastrointestinal fermentation, and plasma metabolomics in dairy cows. Six mid-lactation cows, fitted with rumen, duodenum, and ileum cannulas, were used in a duplicated 3 × 3 Latin square design with 28-day periods. The cows were fed a low RDS (LRDS; 62.
View Article and Find Full Text PDFMicroorganisms
January 2025
Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany.
Background: Cow's milk represents an important protein source. Here, especially casein proteins are important components, which might be a promising source of alternative protein production by microbial expression systems. Nevertheless, caseins are difficult-to-produce proteins, making heterologous production challenging.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia.
The extent of endocrine changes in response to various levels of heat stress and subsequent recovery is not well understood. Two cohorts of 12 Black Angus steers were housed in climate-controlled rooms (CCR) and subjected to three thermal periods: PreChallenge (5 d), Challenge (7 d) and Recovery (5 d). PreChallenge and Recovery provided thermoneutral conditions.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
With the increasing demand for enhancing livestock production performance and optimizing feed efficiency, this study aimed to investigate the effects of fermented total mixed ration (FTMR) containing different proportions of rice straw and sheath and leaves of on systemic nutrient metabolism and oxidative metabolism under host genetic regulation and on growth performance of heifers. A total of 157 heifers aged 7-8 months were selected, and their hair was collected for whole-genome sequencing. They were randomly assigned into four groups of 18 to 21 cattle each and fed FTMR containing varying levels of rice straw (21% in LSF, 28% in MSF, 35% in HSF) or 31% sheath and leaves of (ZF) for a two-month period.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Herbivore Research Laboratory, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China.
This study investigated the effects of dietary capsaicin supplementation on antioxidant capacity, immune function, and gut microbiota in periparturient dairy cows. Twenty Holstein cows with an average parity of 2.5 ± 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!