Anal Chim Acta
Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Nishi-ku, Niigata, 950-2181, Japan.
Published: February 2021
The method for fabricating a grating prism surface plasmon resonance (SPR) sensor chip was developed. The grating prism was 3D-printed by a stereolithography 3D printer and subsequently created a grating pattern by soft lithography. A gold film was thermally evaporated on the grating prism. Moreover, a liquid cell was 3D-printed and assembled into a gold-coated grating prism. To make the sensor chip compact and practical, a compatible prism holder was 3D-printed by a fused deposition model 3D printer. The SPR sensor chip was mounted on the rotation stage and the SPR spectrum was recorded by spectrometer. The SPR excitation of the sensor chip can be extended to the near-infrared region by creating a grating pattern on the prism surface. A gold-coated grating prism exhibited dual modes of SPR excitations, namely, prism-coupling SPR (PC-SPR) and grating-coupling SPR (GC-SPR). The dual-mode SPR excitation was observed at the incident angles of 45°-80°. When the incident angle increased, the SPR excitation of the PC-SPR mode exhibited a blue shift in the wavelength region of 480-690 nm, whereas the GC-SPR mode exhibited a red shift in the wavelength region of 670-770 nm. The surface plasmon (SP) dispersion obtained from the dual-mode SPR configuration confirmed observable PC-SPR (which corresponded to + SP of the gold-resin interface) and GC-SPR (which corresponded to -SP of the gold-air interface), which could be excited from the developed substrate. The refractive index sensitivities of the PC-SPR and GC-SPR modes were 2924.4 and 414.9 nm RIU, respectively. The SPR excitations of the sensor chip exhibited a simultaneous shift when the local refractive index of the materials adjacent to the gold-coated grating prism surface was changed, especially the material that had overlapping light absorption at the SPR excitation wavelength. Using this fabrication process, the prism is designed and then printed; moreover, the grating pattern on the prism surface can be employed to tune the SPR excitation wavelength of the sensor chip for the versatility and broad perspective of the optical sensing-based SPR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2020.12.027 | DOI Listing |
ACS Mater Au
January 2025
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States.
The surge of flexible, biointegrated electronics has inspired continued research efforts in designing and developing chip-less and wireless devices as soft and mechanically compliant interfaces to the living systems. In recent years, innovations in materials, devices, and systems have been reported to address challenges surrounding this topic to empower their reliable operation for monitoring physiological signals. This perspective provides a brief overview of recent works reporting various chip-less electronics for sensing and actuation in diverse application scenarios.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
Organ-on-a-chip (OoC) is a breakthrough technology in biomedicine. As microphysiological systems constructed , OoCs can simulate the main structures and functions of human organs, thereby providing a powerful tool for drug screening and disease model construction. Furthermore, the coupling of OoCs and sensors has been an innovative discovery in the field of biomedical and electronic engineering in recent years.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, School of Microelectronics, Fudan University, Shanghai 200433, China.
The exponential growth of the Internet of Things (IoTs) has led to the widespread deployment of millions of sensors, crucial for the sensing layer's perception capabilities. In particular, there is a strong interest in intelligent photonic sensing. However, the current photonic sensing device and chip typically offer limited functionality, and the devices providing their power take up excessive amounts of space.
View Article and Find Full Text PDFLuminescence
January 2025
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
Currently, the development of red Mn-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn-activated fluoride luminescent materials is still a crucial issue. Herein, a new red RbNaVF:Mn luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Computing, Mathematics and Engineering, Charles Sturt University, Bathurst, NSW 2795, Australia.
Soil colour is a key indicator of soil health and the associated properties. In agriculture, soil colour provides farmers and advises with a visual guide to interpret soil functions and performance. Munsell colour charts have been used to determine soil colour for many years, but the process is fallible, as it depends on the user's perception.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.