The development of miniature, sensitive, high throughput, and in-situ analytical instruments has been becoming developing field of modern analytical chemistry. Due to its unique advantages such as easy operation, simple configuration, ambient working temperature and pressure, low power consumption, and miniature dimension, dielectric barrier discharge (DBD) has always been a hot topic in analytical chemistry. This review gives an overview of miniature DBD application in analytical atomic spectrometry, starting with an introduction to its geometrical configuration and ionization mechanisms. Then, its applications such as excitation or atomization sources in atomic emission spectrometry (AES), atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS) are reviewed. Also, its application as vapor generation system in atomic spectrometry is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2020.11.034DOI Listing

Publication Analysis

Top Keywords

atomic spectrometry
12
dielectric barrier
8
barrier discharge
8
discharge dbd
8
analytical atomic
8
analytical chemistry
8
atomic
6
spectrometry
6
analytical
5
review miniature
4

Similar Publications

Although nickel is found in the active sites of a class of superoxide dismutase (SOD), nickel complexes with non-peptidic ligands normally do not catalyze superoxide degradation, and none has displayed activity comparable to those of the best manganese-containing SOD mimics. Here, we find that nickel complexes with polydentate quinol-containing ligands can exhibit catalytic activity comparable to those of the most efficient manganese-containing SOD mimics. The nickel complexes retain a significant portion of their activity in phosphate buffer and under operando conditions and rely on ligand-centered redox processes for catalysis.

View Article and Find Full Text PDF

From contamination to detection: The growing threat of heavy metals.

Heliyon

January 2025

Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo, 11835, Egypt.

Heavy metals like lead, mercury, cadmium, and arsenic are environmental pollutants that accumulate in ecosystems and pose significant health risks to humans and wildlife, primarily through food chain contamination where plants absorb heavy metals, affecting their growth and threatening consumer health. Cognitive and cardiovascular functions are particularly affected by exposure to heavy metals even at low concentrations through the induction of oxidative stress. Various analytical techniques are used in measuring heavy metals in different environmental and biological samples.

View Article and Find Full Text PDF

This research focuses on the selective detection of Hg2+ ions using hybrid nanosensors composed of rhodamine building blocks linked to polyamine units of varying chain lengths to produce Rho1-Rho4, which were subsequently conjugated with thioctic acid (RT1-RT4) and attached to the surface of gold nanoparticles to create hybrid nanosensors (GRT1-GRT4) designed for detecting heavy metals. The chemical structures, purity, morphology, and chemical composition were characterized through XRD, NMR, TEM, ATR-FTIR, and mass spectrometry. These hybrid nanosensors demonstrated excellent selectivity and sensitivity in colorimetric and fluorescence responses towards Hg2+, outperforming other metal ions.

View Article and Find Full Text PDF

In the present study, dispersive solid phase extraction - hydride generation integrated with micro-sampling gas-liquid separator - flame atomic absorption spectrometry was proposed to determine lead in lake water samples taken in the Horseshoe Island, Antarctica. In scope of this study, microwave assisted NiFeO nanoparticles were synthesized, and the characterization of nanoparticles were carried out by FT-IR, XRD and SEM. All influential parameters of dispersive solid phase extraction and hydride generation were optimized to enhance signal intensity belonging to the analyte.

View Article and Find Full Text PDF

The composition of the metal-polymer friction pair is carefully considered for interacting with water and hydrogen, ensuring the metals electrode process potential remains below waters in a neutral medium. Simultaneously, adherence to defined chemical composition ratios for the metal-polymer materials is crucial. This analysis is conducted under conditions of thermal stabilization, characterized by a minimal temperature gradient across the rim thickness within an equivalent thermal field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!