Transposable element subfamily annotation has a reproducibility problem.

Mob DNA

Department of Computer Science, University of Montana, 32 Campus Drive, Missoula, MT, USA.

Published: January 2021

Background: Transposable element (TE) sequences are classified into families based on the reconstructed history of replication, and into subfamilies based on more fine-grained features that are often intended to capture family history. We evaluate the reliability of annotation with common subfamilies by assessing the extent to which subfamily annotation is reproducible in replicate copies created by segmental duplications in the human genome, and in homologous copies shared by human and chimpanzee.

Results: We find that standard methods annotate over 10% of replicates as belonging to different subfamilies, despite the fact that they are expected to be annotated as belonging to the same subfamily. Point mutations and homologous recombination appear to be responsible for some of this discordant annotation (particularly in the young Alu family), but are unlikely to fully explain the annotation unreliability.

Conclusions: The surprisingly high level of disagreement in subfamily annotation of homologous sequences highlights a need for further research into definition of TE subfamilies, methods for representing subfamily annotation confidence of TE instances, and approaches to better utilizing such nuanced annotation data in downstream analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827986PMC
http://dx.doi.org/10.1186/s13100-021-00232-4DOI Listing

Publication Analysis

Top Keywords

subfamily annotation
16
transposable element
8
annotation
8
subfamily
5
element subfamily
4
annotation reproducibility
4
reproducibility problem
4
problem background
4
background transposable
4
element sequences
4

Similar Publications

The trichomes of mustard leaves have significance due to their ability to combat unfavorable external conditions and enhance disease resistance. It was demonstrated that the MYB-bHLH-WD40 (MBW) ternary complex consists of MYB, basic Helix-Loop-Helix (bHLH), and WD40-repeat (WD40) family proteins and plays a key role in regulating trichome formation and density. The bHLH gene family, particularly the Myelocytomatosis (MYC) proteins that possess the structural bHLH domain (termed bHLH-MYC), are crucial to the formation and development of leaf trichomes in plants.

View Article and Find Full Text PDF

Background: Type 2 diabetes (T2D) has been linked to changes in DNA methylation levels, which can, in turn, alter transcriptional activity. However, most studies for epigenome-wide associations between T2D and DNA methylation comes from cross-sectional design. Few large-scale investigations have explored these associations longitudinally over multiple time-points.

View Article and Find Full Text PDF

TCP is a plant-specific transcription factor that plays an important role in plant growth and development. In this study, we used bioinformatics to identify the entire genome of the gene family in Bat, and we analyzed the expression characteristics of genes under UV-B radiation using qRT-PCR. The results were as follows: (1) 24 members of the gene family were identified in , evenly distributed on its 24 chromosomes.

View Article and Find Full Text PDF

Avian pathogenic Escherichia coli-targeting phages for biofilm biocontrol in the poultry industry.

Vet Microbiol

February 2025

Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Poland. Electronic address:

Avian pathogenic Escherichia coli (APEC) is a principal etiologic agent of avian colibacillosis, responsible for significant economic losses in the poultry industry due to high mortality and disease treatment with antibiotics. APEC and its ability to form biofilms on food and processing surfaces contributes to its persistence within farms. Bacteriophages are promising antibacterial agents for combating APEC.

View Article and Find Full Text PDF

The genus is distributed in the eastern three rivers on the Yunnan-Guizhou Plateau and its adjacent regions, located to the southeast of the Qinghai-Tibet Plateau. Its origin and evolution are likely influenced by the uplift of the Qinghai-Tibet Plateau. However, the historical impact of geological events on the divergence and distribution of this fish group has not been fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!