Potassium (K) exerts key physiological functions such as osmoregulation, stomatal movement, membrane transport, protein synthesis and photosynthesis among others. Previously, it was demonstrated in Arabidopsis thaliana that the loss of function of the chloroplast KEfflux Antiporters KEA1 and KEA2, located in the inner envelope membrane, provokes inefficient photosynthesis. Therefore, the main goal of this study was to evaluate the potential impact of the loss of function of those cation transport systems in the metabolism of reactive oxygen and nitrogen species (ROS and RNS). Using 14-day-old seedlings from Arabidopsis double knock-out kea1kea2 mutants, ROS metabolism and NO content in roots and green cotyledons were studied at the biochemical level. The loss of function of AtKEA1 and AtKEA2 did not cause oxidative stress but it provoked an alteration of the ROS homeostasis affecting some ROS-generating enzymes. These included glycolate oxidase (GOX) and NADPH-dependent superoxide generation activity, enzymatic and non-enzymatic antioxidants and both NADP-isocitrate dehydrogenase and NADP-malic enzyme activities. NO content, analyzed by confocal laser scanning microscopy (CLSM), was negatively affected in both photosynthetic and non-photosynthetic organs in kea1kea2 mutant seedlings. Furthermore, the S-nitrosoglutathione reductase (GSNOR) protein expression and activity were downregulated in kea1kea2 mutants, whereas the tyrosine nitrated protein profile, analyzed by immunoblot, was unaffected but the relative expression of each immunoreactive band changed. Moreover, kea1kea2 mutants showed an increased photorespiratory pathway and stomata closure, thus promoting a higher resilience to drought stress. Data suggest that the chloroplast osmotic balance and integrity maintained by AtKEA1 and AtKEA2 are necessary to keep the balance of ROS/RNS metabolism. Moreover, these data open new questions about how endogenous NO generation might be affected by the K/H transport located in the chloroplasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2021.01.010 | DOI Listing |
Alzheimers Dement
December 2024
Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A., Philadelphia, PA, USA.
Background: The vicious cycle between depression and dementia increases the risk of Alzheimer's Disease (AD) pathogenesis and pathology. This study investigates therapeutic effectiveness versus side effects and the underlying mechanisms of intranasal dantrolene nanoparticles (IDNs) to treat depression behavior and memory loss in 5XFAD mice.
Method: 5XFAD and wild-type B6SJLF1/J mice were treated with IDNs (IDN, 5 mg/kg) in Ryanodex formulation for a duration of 12 weeks.
Background: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India.
Background: Parkinson's disease is an hypokinetic disorder characterized by selective loss of dopaminergic in substantia nigra pars compacta (SNPc) region of mid-brain. Dopaminergic degeneration of neurons is considered to be due to oxidative stress, neuroinflammation, neurons mitochondrial dysfunction and glutamate excitotoxicity etc. Filgrastim has been reported to produce anti-oxidant, anti-inflammatory and neuromodulatory actions in previous studies.
View Article and Find Full Text PDFBackground: TREM2 is a lipid-sensing receptor expressed by microglial sub-populations within neuropathological microenvironments, whose downstream signaling promotes microglial survival, plasticity, and migration. Multiple loss-of-function variants strongly implicate TREM2 as a key regulator of Alzheimer's disease (AD) risk. Accordingly, TREM2 antibodies are currently in development to evaluate the therapeutic potential of TREM2 agonism in neurodegenerative diseases.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A., Philadelphia, PA, USA.
Background: This study investigates the therapeutic versus side effects of intranasal lithium chloride (LiCl) in Ryanodex formulation vehicle (RFV) to inhibit inflammation and pyroptosis and to ameliorate on cognitive dysfunction and depressive behavior in 5XFAD mice.
Method: 5XFAD and wild type (WT) B6SJLF1/J mice were treated with intranasal or oral LiCl (3 mM/kg) dissolved in RFV starting at 2 or 9 months old and the continuous treatment lasted for 12 weeks. Behavior was examined for depression, cognition, olfaction, and motor function at the ages of 5 or 12 months.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!