Heavy metal ions and pesticides are the noteworthy toxic substances which must be removed from contaminated water for safeguarding public health. The higher levels of these substances in natural water may adversely affect the human health, climate and the eco-framework. The adsorptive removal of hazardous constituents employing metal organic frameworks has drawn considerable attention of researchers during the last decade. From this point of view, single crystal of calcium fumarate [Ca(CHO) (HO)(CHOH)] has been developed and analyzed by single crystal X-ray crystallography which confirmed the formation of 3-D metal organic frameworks (MOFs). The synthesized MOFs was employed for simultaneous adsorptive removal of imidacloprid, a high consumption pesticide, and highly toxic Cd (II) from aqua ecosystem. The effect of variation in experimental conditions such as solution pH, adsorbent dosage, contact time, initial concentration and temperature on adsorption was systematically evaluated. Both the imidacloprid and Cd(II) exhibited maximum adsorption at pH 6.5 and 7.8, respectively. The equilibrium empirical data was fitted into Langmuir, Freundlich and Temkin isotherms. The adsorption capacity of CaFu MOFs was observed to be 467.23 and 781.2 mg g for imidacloprid and cadmium ions, respectively. The adsorbed pollutants were desorbed from the adsorbent using dilute HCl, and the material was reused for five adsorption-desorption cycles without any appreciable loss of adsorption capacity. Therefore, the 3-D CaFu MOFs could be utilized as a novel material for adsorptive removal of imidacloprid pesticide as well as Cd (II) from wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.129648DOI Listing

Publication Analysis

Top Keywords

removal imidacloprid
12
adsorptive removal
12
imidacloprid pesticide
8
cadmium ions
8
metal organic
8
organic frameworks
8
single crystal
8
adsorption capacity
8
cafu mofs
8
imidacloprid
5

Similar Publications

Model-based scenario analysis to support the operation of solar photo-Fenton plants.

J Environ Manage

January 2025

Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, Almería, 04120, Spain; Chemical Engineering Department, University of Almería, Carretera de Sacramento s/n, Almería, 04120, Spain.

Model-based tools applied to wastewater management have been identified as an emerging solution to address the associated challenges related to the optimization of the technologies, meeting more restricted water quality standards. Thus, for the first time, the demonstration of the solar photo-Fenton process for microcontaminant removal in the operating environment of a model-based tool is reported. This tool aids in determining the right cost-effective seasonal strategy for a 37-m demonstration-scale photoreactor operating in a rural wastewater treatment plant.

View Article and Find Full Text PDF

Biodegradation of imidacloprid and diuron by Simplicillium sp. QHSH-33.

Pestic Biochem Physiol

December 2024

College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China. Electronic address:

Imidacloprid (IMI) and diuron (DIU) are widely used pesticides in agricultural production. However, their excessive use and high residues have caused harm to the ecological environment and human health. Microbial remediation as an efficient and low-toxic method has become a research hotspot for controlling environmental pollutants.

View Article and Find Full Text PDF

Insights into the Removal of Organic Contaminants by Co-CeO Nanocatalysts via CaCO Activation: Performance, Kinetic, and Mechanism.

Langmuir

December 2024

Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.

The advanced oxidation process based on S(IV) has garnered increasing attention, owing to its efficiency in degrading contaminants. Here, a cobalt-doped cerium oxide catalyst (Co-CeO) was employed to activate calcium sulfite (CaSO) for imidacloprid degradation. The Co-CeO catalyst was characterized by using SEM, BET, XRD, and XPS techniques to analyze its structural and chemical properties.

View Article and Find Full Text PDF

The widespread use of imidacloprid (IMI) in pest control presents significant environmental challenges due to its persistence and low removal efficiency. This study introduces magnetic Covalent Organic Frameworks (COFs) functionalized with Fe₃O₄ nanoparticles (Fe₃O₄@HMN-COF, Fe₃O₄@MAN-COF, and Fe₃O₄@SIN-COF) as efficient adsorbents for IMI removal from water. These COFs, engineered with nitrogen-rich structures and extensive π-electron systems, achieve superior adsorption through π-π interactions, hydrophobic interactions, and hydrogen bonding.

View Article and Find Full Text PDF

Control of the sheep blowfly relies largely on the use of insecticides applied prophylactically in advance of expected fly activity. However, the blowfly has shown an ability to develop resistance to some of these insecticides. Recent reports of the co-occurrence of resistance to both dicyclanil and imidacloprid in in vitro bioassays with field-collected fly strains has raised the possibility that the two resistances may represent cross-resistance linked by a common mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!