The heart is the most metabolically flexible organ with respect to the use of substrates available in different states of energy metabolism. Cardiac mitochondria sense substrate availability and ensure the efficiency of oxidative phosphorylation and heart function. Mitochondria also play a critical role in cardiac ischemia/reperfusion injury, during which they are directly involved in ROS-producing pathophysiological mechanisms. This review explores the mechanisms of ROS production within the energy metabolism pathways and focuses on the impact of different substrates. We describe the main metabolites accumulating during ischemia in the glucose, fatty acid, and Krebs cycle pathways. Hyperglycemia, often present in the acute stress condition of ischemia/reperfusion, increases cytosolic ROS concentrations through the activation of NADPH oxidase 2 and increases mitochondrial ROS through the metabolic overloading and decreased binding of hexokinase II to mitochondria. Fatty acid-linked ROS production is related to the increased fatty acid flux and corresponding accumulation of long-chain acylcarnitines. Succinate that accumulates during anoxia/ischemia is suggested to be the main source of ROS, and the role of itaconate as an inhibitor of succinate dehydrogenase is emerging. We discuss the strategies to modulate and counteract the accumulation of substrates that yield ROS and the therapeutic implications of this concept.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2021.01.036 | DOI Listing |
Zhongguo Zhong Yao Za Zhi
December 2024
School of Traditional Chinese Medicine, Binzhou Medical College Yantai 264003, China Institute of Basic Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.
This article explored the specific mechanism by which ginsenoside Rg_1 regulates cellular autophagy to attenuate hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes through the microRNA155(miR-155)/neurogenic gene Notch homologous protein 1(Notch1)/hairy and enhancer of split 1(Hes1) pathway. An HL-1 cell model with H/R injury was constructed, and ginsenoside Rg_1 and/or Notch1 inhibitor DAPT and miR-155 mimics were used to treat cells. Cell counting kit(CCK)-8 was used to detect the relative viability of HL-1 cells with H/R injury.
View Article and Find Full Text PDFJ Mol Cell Cardiol Plus
March 2025
Center for Clinical Investigation (CIC1436)/CARDIOMET, Rangueil University Hospital, Toulouse, France.
Background: The identification of new biomarkers that improve existing cardiovascular risk prediction models for acute coronary syndrome is essential for accurately identifying high-risk patients and refining treatment strategies. Autophagy, a vital cellular degradation mechanism, is important for maintaining cardiac health. Dysregulation of autophagy has been described in cardiovascular conditions such as myocardial ischemia-reperfusion injury, a key factor in myocardial infarction (MI).
View Article and Find Full Text PDFEur Heart J Case Rep
January 2025
Service de Cardiologie, Hôpital Trousseau, CHU de Tours, Avenue de la République, 37170 Chambray-Les-Tours, France.
Background: Myocardial bridging (MB) is considered a frequent and benign condition. However, some patients may experience symptoms. The recent ESC guidelines on sports participation provide guidance on the management of these symptomatic patients with MB but do not provide guidance in the presence of another cardiac pathology.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia.
As several decades of research have shown the cardioprotective effects of angiotensin-converting enzyme (ACE) inhibitors alone or in combination with diuretics, we were interested in investigating the effects of subchronic therapy of these drugs on ischemia-reperfusion (I/R) damage to the heart, as well as their influence on oxidative status. The research was conducted on 40 spontaneously hypertensive male Wistar Kyoto rats, divided into 4 groups. Animals were treated for four weeks with 10 mg/kg/day zofenopril alone or in combination with hydrochlorothiazide, indapamide and spironolactone per os.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. Electronic address:
Chronic pain is a prevalent condition affecting a significant portion of the global population and is known to be associated with an increased risk of cardiovascular diseases. Despite the clinical relevance, the mechanisms underlying the link between chronic pain and myocardial ischemia-reperfusion (MI/R) injury remain poorly understood. This study aimed to investigate the role of the superior cervical ganglion (SCG) in mediating the effects of chronic pain on MI/R injury and to develop a novel therapeutic strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!