Nonwoven fabrics containing silver nanoparticles (AgNPs) are widely utilized to assist management of infected wounds and those at risk of infection. However, such materials have varied responses due to their chemical nature. Herein we investigated the correlation between the concentration of AgNPs taken up by nonwoven viscose material and antibacterial activity in a simulated wound fluid model against two bacterial models (i.e., Escherichia coli and Staphylococcus aureus). Thereafter, the developed nonwoven viscose containing AgNPs were independently coated with two polyacid carbohydrate polymers (i.e., carboxymethyl chitosan (CMCs), alginate (ALG)), and gelatin (GEL) protein in order to study their influence on the physical and biological attributes in vitro and in vivo. Intensive characterizations were utilized to monitor the physicochemical features of the developed nonwoven viscose. The results demonstrated that higher concentrations of AgNPs were taken up by viscose fabric whilewhile increasing AgNPs in the colloidal solution during padding process. Overall, the treated nonwoven fabric with and without polymers' coatings showed remarkable antibacterial activity against two bacterial models in vitro. As well as they achieved high and speed wound recovery in rats which was almost similar to commercial dermazin treatment. Therefore, it validates excellent nonwoven dressing clinically relevant to the wound type and condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.01.123 | DOI Listing |
Polymers (Basel)
August 2024
Department of Textile Design and Management, Faculty of Textile Technology, University of Zagreb, Prilaz Baruna Filipovica 28a, 10000 Zagreb, Croatia.
An open field experiment from November 2022 to May 2023 in Croatia, which is characterized by a continental humid climate, evaluated nonwoven mulches made from viscose, jute, and hemp fibres blended with PLA fibres. The blends of viscose and jute fibres (90:10, 80:20, and 70:30 ratios) were produced using mechanical web formation on cards with needle punching for bonding webs. Additionally, hemp fibres were blended with PLA fibres in a ratio of 80:20.
View Article and Find Full Text PDFPolymers (Basel)
August 2024
School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
The coffee industry is developing rapidly in the world, and the use of coffee filtration nonwovens (CFNs) is becoming more and more extensive; however, there is a lack of standards and research for its production and trade, and the quality of related products on the market is uneven at present. Here, eight double-layer composite coffee filtration nonwovens (D-LCCFNs) were prepared by using 5 g/m and 10 g/m polypropylene (PP) melt-blown nonwovens (MNs), 20 g/m PP spunbonded nonwovens and 20 g/m viscose/ES fiber chemically bonded nonwovens, and the physical properties, morphology and the filtration effect of coffee and purified water for the prepared samples were tested. It was found that the surface density of the microfiber layer (MNs) in the D-LCCFNs was negatively correlated with the coffee filtration rate; when the microfiber layer in the D-LCCFNs was in direct contact with the coffee, the liquid started to drip later, and the filtration rate of the coffee was slower; the filtration rate of the samples with the viscose/ES chemically bonded nonwovens was very fast.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2024
College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, PR China. Electronic address:
Lithium-sulfur batteries (LSBs) hold promise as the next-generation lithium-ion batteries (LIBs) due to their ultra-high theoretical capacity and remarkable cost-efficiency. However, these batteries suffer from the serious shuttle effect, challenging their practical application. To address this challenge, we have developed a unique interlayer (HCON@CNWF) composed of hollow cerium oxide nanorods (CeO) anchored to carbonized non-woven viscose fabric (CNWF), utilizing a straightforward template method.
View Article and Find Full Text PDFPolymers (Basel)
April 2024
Department of Management in Agriculture, Krizevci University of Applied Sciences, Milislava Demerca 1, 48260 Krizevci, Croatia.
Numerous research showed that mulching with conventional agro foils elevates soil temperature and promotes plant growth, but negatively influences soil health and brings environmental concerns. Most of the published research on nonwoven mulches for plant cultivation includes nonwoven fabrics produced by extrusion processes providing nonwoven fabric structures similar to films. A limited number of studies investigate the impact of nonwoven mulches produced by a mechanical process on the cards and bonded by needling on plant cultivation.
View Article and Find Full Text PDFPolymers (Basel)
January 2024
Department of Thermodynamics, Mechanical Engineering and Energy, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulica 19, 10000 Zagreb, Croatia.
The performance and degradation of nonwoven mulches made from viscose, jute, hemp fibers, and their blends with PLA fibers, subjected to field conditions, are investigated. This research explores the possible substitution of traditional agricultural polyethylene mulching agro foil with environmentally friendly biodegradable nonwoven mulches produced from blends of jute, hemp, and viscose fibers along with PLA fibers. The nonwoven mulches underwent a ten-month exposure to field conditions, showing varied degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!