Recent studies have suggested that oxygen-derived free radicals are involved in the reperfusion injury of ischemic skeletal muscle. Although postischemic necrosis and increased vascular permeability have been attenuated with the addition of free radical scavengers, no unequivocal chemical evidence for free radical injury in skeletal muscle is available. The purpose of this study was to identify products of free radical-mediated membrane injury by isolation of lipid oxidation products (hydroxy-conjugated dienes) from postischemic skeletal muscle. The bilateral canine gracilis muscle model was used, and in each pair one muscle was exposed to 3 and the other to 5 h of normothermic ischemia. Muscle biopsies were taken before and at end ischemia, as well as during the first 3 h of reperfusion. Phospholipids were extracted from the muscle biopsies and the fatty acids hydrolyzed from the 2 position. After methylation, the oxidized fatty acid esters were separated by high-performance liquid chromatography. Hydroxy diene peaks absorbing at 235 nm were collected and subjected to gas chromatography-mass spectrometry (GC-MS) for positive structural identification. No significant increase in the level of conjugated dienes occurred during ischemia. Significant increases, however, were detected during the period of reperfusion, although the time when peak levels were achieved varied between animals. The cumulative sum of dienes produced during reperfusion in both 3- and 5-h muscles was significantly increased over pre- and end-ischemic values. The hydroxy-conjugated diene isomers of 18:2 and 20:4 were positively identified in reperfusion biopsies by GC-MS. These studies provide chemical evidence of free radical-mediated lipid oxidation during reperfusion of ischemic skeletal muscle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.1988.254.3.H578 | DOI Listing |
J Diabetes Metab Disord
June 2025
Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Żurawia 71A, Białystok, 15-540 Poland.
Objectives: Retinoid X receptors (RXRs) are nuclear hormone receptors (NRs) functioning as transcription factors. There are three RXR isoforms: RXRA (NR2B1), RXRB (NR2B2), and RXRG (NR2B3). RXRs serve as master regulators of gene networks governing cell growth, differentiation, survival, and death.
View Article and Find Full Text PDFCureus
December 2024
General Surgery, Jawaharlal Nehru Medical College, Wardha, IND.
Hydatidosis is an infection caused by the helminth . The liver and lungs are the most frequently affected organs, primarily due to their roles in filtering blood. Primary hydatidosis of the skeletal muscles is an exceedingly rare condition, often asymptomatic, which can lead to its misdiagnosis as a more common soft tissue tumour.
View Article and Find Full Text PDFFront Physiol
January 2025
National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China.
Skeletal muscle (SKM) has crucial roles in locomotor activity and posture within the body and also functions have been recognized as an actively secretory organ. Numerous bioactive molecules are secreted by SKM and transported by extracellular vesicles (EVs), a novel class of mediators of communication between cells and organs that contain various types of cargo molecules including lipids, proteins and nucleic acids. SKM-derived EVs (SKM-EVs) are intercellular communicators with significant roles in the crosstalk between SKM and other organs.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
UR Diabète et Thérapeutiques, Centre européen d'étude du Diabète, Université de Strasbourg, Strasbourg, France.
Aim: Pancreatic β-cells are susceptible to inflammation, leading to decreased insulin production/secretion and cell death. Previously, we have identified a novel triceps-derived myokine, DECORIN, which plays a pivotal role in skeletal muscle-to-pancreas interorgan communication. However, whether DECORIN can directly impact β-cell function and susceptibility to inflammation remains unexplored.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Orthopedic Surgery, Jiujiang University Clinical Medical College (Jiujiang University Affiliated Hospital), Jiujiang, 332006, China.
Purpose: This study aims to investigate the influence of multifidus muscle fat infiltration on clinical outcomes in lumbar disc herniation (LDH) undergoing percutaneous endoscopic lumbar discectomy (PELD).
Methods: A retrospective analysis was conducted on 224 patients who underwent lateral PELD, with complete one-year follow-up data. Patients were divided into two groups based on preoperative MRI evaluation of L4 multifidus muscle fat infiltration: a mild group (< 25%) and a severe group (≥ 25%).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!