Optical films that alter light transmittance may reduce energy consumption in high-tech greenhouses, but their impact on crop physiology remains unclear. We compared the stomatal responses of Capsicum plants grown hydroponically under control glass (70% diffuse light) or the smart glass (SG) film ULR-80, which blocked >50% of short-wave radiation and ~9% of photosynthetically active radiation (PAR). SG had no significant effects on steady-state (gs) or maximal (gmax) stomatal conductance. In contrast, SG reduced stomatal pore size and sensitivity to exogenous abscisic acid (ABA), thereby increasing rates of leaf water loss, guard cell K+ and Cl- efflux, and Ca2+ influx. SG induced faster stomatal closing and opening rates on transition between low (100 µmol m-2 s-1) and high PAR (1500 µmol m-2 s-1), which compromised water use efficiency relative to control plants. The fraction of blue light (0% or 10%) did not affect gs in either treatment. Increased expression of stomatal closure and photoreceptor genes in epidermal peels of SG plants is consistent with fast stomatal responses to light changes. In conclusion, stomatal responses of Capsicum to SG were more affected by changes in light intensity than spectral quality, and re-engineering of the SG should maximize PAR transmission, and hence CO2 assimilation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erab028DOI Listing

Publication Analysis

Top Keywords

stomatal responses
12
smart glass
8
stomatal
8
responses capsicum
8
µmol m-2
8
m-2 s-1
8
light
6
glass impacts
4
impacts stomatal
4
stomatal sensitivity
4

Similar Publications

Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.

View Article and Find Full Text PDF

Plant Adaptation and Soil Shear Strength: Unraveling the Drought Legacy in .

Plants (Basel)

January 2025

Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.

Climate change has led to an increasing frequency of droughts, potentially undermining soil stability. In such a changing environment, the shallow reinforcement effect of plant roots often fails to meet expectations. This study aims to explore whether this is associated with the alteration of plant traits as a response to environmental change.

View Article and Find Full Text PDF

Assessment of the Photosynthetic Response of Potato Plants Inoculated with and Treated with Flesh-Colored Potato Extracts Nanoencapsulated with Solid Lipid Nanoparticles.

Plants (Basel)

January 2025

Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco 4811230, Chile.

Potato has great nutritional and economic importance in agriculture. However, represents a significant risk, reducing the yield and quality of potato production. Flesh-colored potato (FCP) extracts show in vitro inhibitory effects against , although environmental factors may reduce their stability.

View Article and Find Full Text PDF

This study investigates the anatomical adaptations of leaves from two halophyte species, (Forsskal) Asch. and L., in response to pollutants from a cement factory and human activities.

View Article and Find Full Text PDF

Enhancing Soybean Salt Tolerance with GSNO and Silicon: A Comprehensive Physiological, Biochemical, and Genetic Study.

Int J Mol Sci

January 2025

Department of Food Security and Agricultural Development, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.

Soil salinity is a major global challenge affecting agricultural productivity and food security. This study explores innovative strategies to improve salt tolerance in soybean (), a crucial crop in the global food supply. This study investigates the synergistic effects of S-nitroso glutathione (GSNO) and silicon on enhancing salt tolerance in soybean ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!