Reactive oxygen species (ROS) are an important contributor to adverse health effects associated with ambient air pollution. Despite infiltration of ROS from outdoors, and possible indoor sources (eg, combustion), there are limited data available on indoor ROS. In this study, part of the second phase of Air Composition and Reactivity from Outdoor aNd Indoor Mixing campaign (ACRONIM-2), we constructed and deployed an online, continuous, system to measure extracellular gas- and particle-phase ROS during summer in an unoccupied residence in St. Louis, MO, USA. Over a period of one week, we observed that the non-denuded outdoor ROS (representing particle-phase ROS and some gas-phase ROS) concentration ranged from 1 to 4 nmol/m (as H O ). Outdoor concentrations were highest in the afternoon, coincident with peak photochemistry periods. The indoor concentrations of particle-phase ROS were nearly equal to outdoor concentrations, regardless of window-opening status or air exchange rates. The indoor/outdoor ratio of non-denuded ROS (I/O ) was significantly less than 1 with windows open and even lower with windows closed. Combined, these observations suggest that gas-phase ROS are efficiently removed by interior building surfaces and that there may be an indoor source of particle-phase ROS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396106PMC
http://dx.doi.org/10.1111/ina.12789DOI Listing

Publication Analysis

Top Keywords

particle-phase ros
16
ros
11
reactive oxygen
8
oxygen species
8
gas-phase ros
8
outdoor concentrations
8
indoor
5
continuous measurement
4
measurement reactive
4
species inside
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!