Background: The aim of this study was to evaluate the efficacy of deproteinized bovine bone mineral with 10% collagen (DBBM-C) soaked with hyaluronic acid (HA) for ridge preservation in compromised extraction sockets.
Methods: Bilateral third, fourth premolars and first molar were hemisected, distal roots were extracted, and then combined endodontic periodontal lesion was induced in the remaining mesial roots. After 4 months, the mesial roots were extracted and the following four treatments were randomly performed: Absorbable collagen sponge (ACS), ACS soaked with HA (ACS+HA), ridge preservation with DBBM-C covered with a collagen membrane (RP), ridge preservation with DBBM-C mixed with HA and covered with a collagen membrane (RP+HA). Animals were sacrificed at 1 and 3 months following treatment. Ridge dimensional changes and bone formation were examined using microcomputed tomography, histology, and histomorphometry.
Results: At 1 month, ridge width was significantly higher in the RP and RP+HA groups than in the ACS and ACS+HA groups, while the highest proportion of mineralized bone was observed in ACS+HA group. At 3 months, ridge width remained significantly higher in the RP and RP+HA groups than in the ACS and ACS+HA groups. ACS+HA and RP+HA treatments featured the highest proportion of mineralized bone and bone volume density compared with the other groups. No statistical difference was observed between ACS+HA and RP+HA treatments.
Conclusions: Ridge preservation with the mixture DBBM-C/HA prevented dimensional shrinkage and improved bone formation in compromised extraction sockets at 1 and 3 months.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/JPER.20-0832 | DOI Listing |
Bioact Mater
April 2025
School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China.
After tooth extraction, alveolar bone absorbs unevenly, leading to soft tissue collapse, which hinders full regeneration. Bone loss makes it harder to do dental implants and repairs. Inspired by the biological architecture of bone, a deformable SIS/HA (Small intestinal submucosa/Hydroxyapatite) composite hydrogel coaxial scaffold was designed to maintain bone volume in the socket.
View Article and Find Full Text PDFBiomaterials
December 2024
Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China. Electronic address:
Post-extraction alveolar bone resorption invariably compromises implant placement and aesthetic restoration outcomes. Current non-resorbable membranes exhibit limited efficacy in alveolar ridge preservation (ARP) due to insufficient cell recruitment and osteoinductive capabilities. Herein, we introduce a multifunctional electroactive membrane (PPy-BTO/P(VDF-TrFE), PB/PT) designed to spatiotemporally regulate cell migration and osteogenesis, harmonizing with the socket healing process.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales (i.e.
View Article and Find Full Text PDFJ Indian Soc Periodontol
December 2024
Department of Periodontics, MGV's KBH Dental College and Hospital, Nashik, Maharashtra, India.
Introduction: Following tooth extraction, there is comparatively more bone loss at the buccal aspect at 3 months of healing, which may result in 56% bone loss due to resorption of the bucco-facial ridge contour. In the socket shield technique, a tooth is planned for extraction in such a way that the tooth is sectioned in two halves, a palatal section is removed and the facial part is retained.
Materials And Methods: Twenty-six sites, i.
Sci Rep
December 2024
Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY, 11944, USA.
For over a century African swine fever (ASF) has been causing outbreaks leading to devastating losses for the swine industry. The current pandemic of ASF has shown no signs of stopping and continues to spread causing outbreaks in additional countries. Currently control relies mostly on culling infected farms, and strict biosecurity procedures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!