Aberrant DNA methylation is closely associated with the pathogenesis of Parkinson's disease (PD). DNA methyltransferases (DNMTs) are the enzymes for establishment and maintenance of DNA methylation patterns. It has not been clearly defined how DNMTs respond in PD and what mechanisms are associated. Models of PD were established by treatment of five different neurotoxins in cells and intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Plasma samples of PD patients were also used. Western blot, real-time PCR, immunostaining, and/or luciferase reporter were employed. DNA methylation was analyzed by the bisulfite sequencing analysis. Protein expression of DNMT1, but not of DNMT3A and DNMT3B, was reduced in the cellular and mouse models of PD. Paradoxically, mRNA levels of DNMT1 were increased in these models. After ruling out the possibility of protein degradation, we screened a set of miRNAs that potentially targeted DNMT1 3'-UTR by luciferase reporters and expression abundancies. miR-17 was identified for further investigation with miR-19a of low expression as a parallel comparison. Although exogenous transfection of either miR-17 or miR-19a mimics could inhibit DNMT1 expression, results of miRNA inhibitors showed that miR-17, but not miR-19a, endogenously regulated DNMT1 and the subsequent DNA methylation. Furthermore, levels of miR-17 were elevated in the neurotoxin-induced PD models and the plasma of PD patients. This study demonstrates that the miR-17-mediated DNMT1 downregulation underlies the aberrant DNA methylation in PD. Our results provide a link bridging environmental insults and epigenetic changes and implicate miR-17 in therapeutical modulation of DNA methylation in PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-021-02298-w | DOI Listing |
Sci Rep
January 2025
DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium.
Over the past decade, neuropathological diagnosis has undergone significant changes, integrating morphological features with molecular biomarkers. The molecular era has successfully refined neuropathological diagnostic accuracy; however, a substantial number of CNS tumor diagnoses remain challenging, particularly in children. DNA methylation classification has emerged as a powerful machine learning approach for clinical decision-making in CNS tumors.
View Article and Find Full Text PDFNature
January 2025
Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
Female mammalian cells have two X chromosomes, one of maternal origin and one of paternal origin. During development, one X chromosome randomly becomes inactivated. This renders either the maternal X (X) chromosome or the paternal X (X) chromosome inactive, causing X mosaicism that varies between female individuals, with some showing considerable or complete skew of the X chromosome that remains active.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Transcription factors guide tissue development by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of transcription factors. However, how transcription factors navigate chromatin features to selectively bind a small subset of all the possible genomic target loci remains poorly understood.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
January 2025
CsrDD Lab, Department of Microbiology, Dr. D. Y. Patil Medical College Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pimpri, Pune, India. Electronic address:
Histones are positively charged proteins found in the chromatin of eukaryotic cells. They regulate gene expression and are required for the organization and packaging of DNA within the nucleus. Histones are extremely conserved, allowing for transcription, replication, and repair.
View Article and Find Full Text PDFNeuro Oncol
January 2025
Department of Neurology, University Hospital and University of Zurich, Switzerland.
Background: Diffuse hemispheric glioma, histone 3 (H3) G34-mutant, has been newly defined in the 2021 WHO classification of central nervous system tumors. Here we sought to define the prognostic roles of clinical, neuroimaging, pathological, and molecular features of these tumors.
Methods: We retrospectively assembled a cohort of 114 patients (median age 22 years) with diffuse hemispheric glioma, H3 G34-mutant, CNS WHO grade 4 and profiled the imaging, histological and molecular landscape of their tumors.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!