Purpose: Trauma and hemorrhagic shock (T/HS) is a major cause of morbidity and mortality. Existing treatment options are largely limited to source control and fluid and blood repletion. Previously, we have shown that enteral protease inhibition improves outcomes in experimental models of T/HS by protecting the gut from malperfusion and ischemia. However, enteral protease inhibition was achieved invasively, by laparotomy and direct injection of tranexamic acid (TXA) into the small intestine. In this study, we tested a minimally invasive method of enteral protease inhibitor infusion in experimental T/HS that can be readily adapted for clinical use.

Methods: Wistar rats were exsanguinated to a mean arterial blood pressure (MABP) of 40 mmHg, with laparotomy to induce trauma. Hypovolemia was maintained for 120 min and was followed by reperfusion of shed blood. Animals were monitored for an additional 120 min. A modified orogastric multi-lumen tube was developed to enable rapid enteral infusion of a protease inhibitor solution while simultaneously mitigating risk of reflux aspiration into the airways. The catheter was used to deliver TXA (T/HS + TXA) or vehicle (T/HS) continuously into the proximal small intestine, starting 20 min into the ischemic period.

Results: Rats treated with enteral protease inhibition (T/HS + TXA) displayed improved outcomes compared to control animals (T/HS), including significantly improved MABP (p = 0.022) and lactate (p = 0.044). Mass spectrometry-based analysis of the plasma peptidome after T/HS indicated mitigation of systemic proteolysis in T/HS + TXA.

Conclusion: Minimally invasive, continuous enteral protease inhibitor delivery improves outcomes in T/HS and is readily translatable to the clinical arena.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00068-020-01591-yDOI Listing

Publication Analysis

Top Keywords

enteral protease
24
protease inhibition
16
protease inhibitor
12
continuous enteral
8
improves outcomes
8
small intestine
8
minimally invasive
8
protease
7
t/hs
7
enteral
6

Similar Publications

Background: Enteral feeding intolerance, a common type of gastrointestinal dysfunction leading to underfeeding, is associated with increased mortality. Tracheal pepsin A, an indicator of microaspiration, was found in 39% of patients within 24 hours of enteral feeding. Tracheal pepsin A is a potential biomarker of enteral feeding intolerance.

View Article and Find Full Text PDF
Article Synopsis
  • Preterm infants often experience feeding intolerance due to their immature digestive systems, which can lead to increased risks of complications.
  • A study was conducted to evaluate the effects of oral bovine lactoferrin (LF) supplementation on feeding intolerance and intestinal health in these infants, using a randomized double-blind design with 60 preterm neonates.
  • Results showed that infants receiving lactoferrin achieved full feeding sooner (9 days vs. 15 days) and had lower serum zonulin levels, indicating improved intestinal permeability and feeding tolerance compared to the control group.
View Article and Find Full Text PDF

Background: Parenteral nutrition (PN) without enteral nutrition (EN) leads to marked atrophy of gut-associated lymphoid tissue (GALT), causing mucosal defense failure in both the gut and the extraintestinal mucosal system. We evaluated the effects of beta-hydroxy-beta-methylbutyrate (HMB) on GALT and gut morphology in PN-fed mice.

Methods: Experiment 1: male Institute of Cancer Research mice were assigned to the Chow (n = 12), Control (standard PN: n = 10), or H600 and H2000 (PN containing 600 mg/kg or H2000 mg/kg body weight of Ca-HMB: n = 12 and 10, respectively) groups.

View Article and Find Full Text PDF

The Ussing chamber is a tool for analyzing drug absorption. We investigated whether the Ussing chamber can be used to analyze the process from digestion to absorption of protein in the gastrointestinal tract. Mixtures containing infant formula, whole cow's milk, processed soy milk, enteral nutrition, or human breast milk, were placed in the apical membrane side equipped with Caco-2 cells.

View Article and Find Full Text PDF

In our pursuit of an alternative drug against Trichinella spiralis, we assessed the effectiveness of nanocurcumin in alleviating pathogenesis, parasitological factors, MMP-9 levels, and its expression in the enteral and parenteral phases of infection. The nanocurcumin particles, with a spherical shape and a size of 100 ± 20 nm, were used in the study. Eighty mice were divided into four groups: the control group, the untreated infected group, the nanocurcumin-treated group, and the albendazole-treated group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!