Halo-fluorescein for photodynamic bacteria inactivation in extremely acidic conditions.

Nat Commun

State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610064, Chengdu, China.

Published: January 2021

Aciduric bacteria that can survive in extremely acidic conditions (pH < 4.0) are challenging to the current antimicrobial approaches, including antibiotics and photodynamic bacteria inactivation (PDI). Here, we communicate a photosensitizer design concept of halogenation of fluorescein for extremely acidic PDI. Upon halogenation, the well-known spirocyclization that controls the absorption of fluorescein shifts to the acidic pH range. Meanwhile, the heavy atom effect of halogens boosts the generation of singlet oxygen. Accordingly, several photosensitizers that could work at even pH < 2.0 were discovered for a broad band of aciduric bacteria families, with half maximal inhibitory concentrations (IC) lower than 1.1 μM. Since one of the discovered photosensitizers is an FDA-approved food additive (2',4',5',7'-tetraiodofluorescein, TIF), successful bacteria growth inhibition in acidic beverages was demonstrated, with greatly extended shelf life from 2 days to ~15 days. Besides, the in vivo PDI of Candidiasis with TIF under extremely acidic condition was also demonstrated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822816PMC
http://dx.doi.org/10.1038/s41467-020-20869-8DOI Listing

Publication Analysis

Top Keywords

extremely acidic
16
photodynamic bacteria
8
bacteria inactivation
8
acidic conditions
8
aciduric bacteria
8
acidic
6
bacteria
5
halo-fluorescein photodynamic
4
extremely
4
inactivation extremely
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!