A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A facile method for the phosphorylation of cellulosic fabric via atmospheric pressure plasma. | LitMetric

A facile method for the phosphorylation of cellulosic fabric via atmospheric pressure plasma.

Carbohydr Polym

SMITA Research Lab, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India. Electronic address:

Published: March 2021

Green chemistry approach for phosphorylation of cellulose, under atmospheric pressure plasma was investigated and compared with conventional thermal method. The attachment of the phosphate groups was evaluated by P and C solid state NMR spectroscopy and XPS. The thermal method led to the formation of monophosphate of cellulose along with a side product of polymerized phosphate, whereas the plasma method produced only the monophosphate, without any side products. Unlike with the thermal treatment, the appearance and the mechanical properties of the viscose fabric remained nearly same after the plasma treatment. Also, the dyeability of the plasma modified fabric remained unchanged, whereas it decreased significantly in the thermally modified fabric. The amount of phosphate quantified by phosphomolybdate assay was found to be 2.88 ± 0.06 and 4.09 ± 0.19 % in the plasma and the thermal methods, respectively. This method has the potential to replace the existing methods of phosphorylation of cellulose.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2020.117531DOI Listing

Publication Analysis

Top Keywords

atmospheric pressure
8
pressure plasma
8
phosphorylation cellulose
8
thermal method
8
fabric remained
8
modified fabric
8
plasma
6
facile method
4
method phosphorylation
4
phosphorylation cellulosic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!