Hot excitons cooling and multiexcitons Auger recombination in PbS quantum dots.

Nanotechnology

Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.

Published: April 2021

In the past few years, lead chalcogenide quantum dots (QDs) have attracted attention as a new system with a strong quantum confinement effect. In this paper, the hot-excitons cooling and Auger recombination of multiexcitons in PbS QDs are investigated by the femtosecond time-resolved transient absorption spectroscopy. The results show that the excitons dynamics in PbS QDs are closely related to the pump-photon energy and pump-pulse energy. Multiexcitons generate when the excess energy of the absorbed photons is larger than the bandgap energy in PbS QDs. The hot-excitons cooling lifetime increases but the Auger recombination lifetime decreases as the pump-photon energy and the pump-pulse energy increase. Besides, there is a competitive relation between multiple-excitons generation and hot-excitons cooling. The dynamics results of the formation and relaxation of multiexcitons in PbS QDs would shed light on the further understanding of the interaction between excitons and photons in the optoelectronic application based on PbS QDs.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/abdf03DOI Listing

Publication Analysis

Top Keywords

pbs qds
20
auger recombination
12
hot-excitons cooling
12
quantum dots
8
multiexcitons pbs
8
pump-photon energy
8
energy pump-pulse
8
pump-pulse energy
8
pbs
6
qds
6

Similar Publications

The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.

View Article and Find Full Text PDF

Achieving high-performance lead sulfide quantum dot (PbS QD)-based photodetectors requires enhanced carrier transfer, which inevitably leads to an increased dark current. Balancing a high photocurrent and low dark current is crucial. In this work, a bridge-trap structure constructed by the atomic layer deposition of dual oxides is proposed to simultaneously enhance photoresponse performance and reduce dark current.

View Article and Find Full Text PDF

Dual-Gate Modulation in a Quantum Dots/MoS Thin-Film Transistor Gas Sensor.

ACS Sens

December 2024

School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

Mastering the surface chemistry of quantum dots (QDs) has enabled a remarkable gas-sensing response as well as impressive air stability. To overcome the intrinsic receptor-transducer mismatch of QDs, PbS QDs used as sensitive NO receptors are spin-coated on top of a few-layer MoS and incorporated into a thin-film transistor (TFT) gas sensor. This architecture enables the separation of the electron transduction function from the chemical reception function.

View Article and Find Full Text PDF

The rise of big data and the internet of things has driven the demand for multimodal sensing and high-efficiency low-latency processing. Inspired by the human sensory system, we present a multifunctional optoelectronic-memristor-based reservoir computing (OM-RC) system by utilizing a CuSCN/PbS quantum dots (QDs) heterojunction. The OM-RC system exhibits volatile and nonlinear responses to electrical signals and wide-spectrum optical stimuli covering ultraviolet, visible, and near-infrared (NIR) regions, enabling multitask processing of dynamic signals.

View Article and Find Full Text PDF

We contrast the switching of photoluminescence (PL) of PbS quantum dots (QDs) cross-linked with photochromic diarylethene molecules with different end groups, 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] () and 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenethiocarboxylic acid] (). Our results show that the QDs cross-linked with the carboxylic acid end group molecules () exhibit a greater amount of switching in photoluminescence intensity compared to QDs cross-linked with the thiocarboxylic acid end group (). We also demonstrate that regardless of the molecule used, greater switching amounts are observed for smaller quantum dots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!