Bulk fertilizer application is one of the easiest means of improving yield of crops however it comes with several environmental impediments and consumer health menace. In the wake of this situation, sustainable agricultural practices stand as pertinent agronomic tool to increase yield and ensure sufficient food supply from farm to fork. In the present study, efficacy of iron-pulsing in improving the rice yield has been elucidated. This technique involves seed treatment with different concentrations (2.5, 5 and 10 mM) of iron salts (FeCl and FeSO) during germination. FeCl or FeSO was used to treat the sets and depending on the concentration of the salts, the sets were named as C2.5, C5, C10 and S2.5, S5, S10 (where C and S stands for FeCl and FeSO respectively and the numbers succeeding them denotes the concentration of salt in mM). Our investigation identified 72 h of treatment as ideal duration for iron-pulsing. At this time point, the seedling emergence attributes and activities of α-amylase and protease increased. The relative water uptake of the seeds also increased through upregulation of aquaporin expression. The treatment efficiently maintained the ROS balance with the aid of antioxidant enzymes and increased the iron content within the treated seeds. After transplantation in field, photosynthetic rate and chlorophyll content enhanced in the treated plants. Finally, the post-harvest agro-morphological traits (represented through panicle morphology, 1000 seed weight, harvest index) and yield showed significant improvement with treatment. Sets C5 and S5 showed optimum efficiency in terms of yield improvement. To our best knowledge, this study is the first report deciphering the efficacy of iron-pulsing as a safe, cost effective and promising technique to escalate the yield of rice crops without incurring an environmental cost. Thus, iron-pulsing is expected to serve as a potential tool to address global food security in years to come.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.144671DOI Listing

Publication Analysis

Top Keywords

fecl feso
12
yield rice
8
efficacy iron-pulsing
8
yield improvement
8
yield
7
iron-pulsing
5
iron-pulsing novel
4
novel seed
4
seed invigoration
4
invigoration technique
4

Similar Publications

Article Synopsis
  • - The study focuses on improving plantlet regeneration in tissue culture by utilizing iron oxide nanoparticles (FeO-NPs) as a nutrient source in Murashige and Skoog (MS) media to enhance callus formation and control contamination.
  • - The results showed that FeO-NPs significantly increased callus induction and regeneration rates compared to regular MS media, with notable improvements in callus weight, diameter, and root/shoot numbers, indicating a more effective growth environment.
  • - Applying FeO-NPs as a foliar spray led to substantial increases in biomass, height, and chlorophyll content in two rice varieties, while also enhancing enzymatic activities that help plants respond to stress, suggesting that this approach could be beneficial for
View Article and Find Full Text PDF

Deferiprone (DFP) is one of the iron-chelating agents used in iron overload therapy for patients with ß-thalassemia major (ß-TM). However, the use of DFP is limited as it experiences a first-pass effect and can potentially cause iron deficiency due to uncontrolled release. Therefore, iron-responsive (NP-IR) DFP nanoparticle innovation was developed to control DFP release.

View Article and Find Full Text PDF

Many notable applications have been described for magnetic nanoparticles in delivery of diverse drugs and bioactive compounds into cells, magnetofection for the treatment of cancer, photodynamic therapy, photothermal therapy, and magnetic particle imaging (MPI). In response to the growing demand for magnetic nanoparticles for drug delivery or biomedical imaging applications, more effective and eco-friendly methodologies are required for large-scale biosynthesis of this nanoparticles. The major challenge in the large-scale biomedical application of magnetic nanoparticles lies in its low efficiency and optimization of nanoparticle production can address this issue.

View Article and Find Full Text PDF

The settling rate of the mineral fines in an aqueous solution changes depending on the charges they carry. Mineral fines with similar high-magnitude surface charges repel each other and prevent them from settling rapidly. In contrast, fines with no/low-magnitude surface charges can coalesce and agglomerate with the others and settle rapidly due to the increasing mass.

View Article and Find Full Text PDF

Iron deficiency is widespread throughout the world, supplementing sufficient iron or improving the bioavailability of iron is the fundamental strategy to solve the problem of iron scarcity. Herein, we explored a new form of iron supplement, iron chelates of silver carp scales (SCSCP-Fe) were prepared from collagen peptide of silver carp scales (SCSCP) and FeCl·4HO, the effects of external environment and simulated gastrointestinal digestive environment on the stability of SCSCP-Fe and the structural changes of peptide iron chelates during digestion were investigated. The results of in vitro iron absorption promotion showed that the iron bioavailability of SCSCP-Fe was higher than that of FeSO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!