Roles of calcium-dependent protein kinases mediated reactive oxygen species homeostasis in inducing resistance of apples by acibenzolar-S-methyl.

Food Chem

College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China. Electronic address:

Published: June 2021

This study was carried out to investigate the effect of acibenzolar-S-methyl (ASM) and ethylenebis (oxyethylenenitrilo) tetraacetic acid (EGTA) treatments on calcium-dependent protein kinases (CDPKs) and reactive oxygen species (ROS) metabolism in apples. Postharvest ASM treatment increased HO content, reduced glutathione and ascorbic acid contents, and NADPH oxidase, peroxidase, ascorbate peroxidase, superoxide dismutase and glutathione reductase activities and retarded catalase activity and MdCAT expression in apples. ASM treatment enhanced MdSOD, MdPOD, MdAPX, MdGR, MdCDPK1, MdCDPK4, MdCDPK5, MdCDPK7, and MdCDPK21 expressions in apples. However, EGTA + ASM treatments suppressed HO, glutathione and ascorbic acid contents, NADPH oxidase, peroxidase, superoxide dismutase, ascorbate peroxidase and glutathione reductase activities. EGTA + ASM treatments suppressed the selected genes expressions in ROS metabolism and CDPKs, but up-regulated MdCAT expression in apples. These findings suggest that CDPKs play a vital role in regulating ROS metabolism and involve in inducing resistance in apples by ASM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2020.128881DOI Listing

Publication Analysis

Top Keywords

ros metabolism
12
calcium-dependent protein
8
protein kinases
8
reactive oxygen
8
oxygen species
8
inducing resistance
8
resistance apples
8
asm treatment
8
glutathione ascorbic
8
ascorbic acid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!