Per- and polyfluoroalkyl substances (PFAS) have gained increasing attention due to the potential health risks that they present. Secondary sludge and biosolids are known as notable PFAS emission routes to the environment. In this study, partitioning behavior of 14 PFAS were investigated across four secondary wastewater treatment types (activated sludge, trickling filter, biological nutrient removal, and rotating biological contactor; n = 10) and three sludge stabilization methods (composting, aerobic digestion, and anaerobic digestion; n = 6). Batch experiments were conducted to evaluate how PFAS sorption to secondary sludge and biosolid was affected by various treatment methods, solid properties, and solution chemistry parameters. Insignificant differences in compound-specific partitioning coefficients (K) were observed among the four secondary treatment methods. However, sludge stabilization resulted in significantly different partitioning behavior among biosolid samples, in which anaerobically digested biosolids generally had significantly higher K values compared to aerobically digested and composted biosolids (anaerobic digestion > aerobic digestion > composting). Multiple linear regression models were developed to explain analyte-specific K values across the biosolid samples and identified that solid-specific property significance was as follows: protein fraction > organic matter fraction > lipid fraction. Stabilization generally decreased the PFAS sorption capacity relative to the secondary sludge samples. Furthermore, PFAS K increased with elevated calcium concentrations and ionic strengths and decreased with increasing pH values in sludge and biosolid samples. These findings could inform the decision-making process to reduce the release of PFAS to the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.129530 | DOI Listing |
Environ Res
January 2025
Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China; Center for Global Change and Ecological Forecasting, Institute of Eco-Chongming, Shanghai, China. Electronic address:
Eutrophication caused by human activities has severely impacted freshwater ecosystems, leading to harmful cyanobacterial blooms that threaten water quality and ecosystem stability. During blooms, denitrification is a key process for nitrogen removal, which can occur both in the sediment and in the waterbody mediated by cyanobacterial aggregate (CA)-associated microorganisms. In this study, the structure, dynamics and assembly mechanisms of CA-associated nirK-, nirS-, and nosZ-encoding denitrifying communities were investigated in the eutrophic Lake Taihu across the bloom season.
View Article and Find Full Text PDFSci Total Environ
January 2025
INRAE, UR RiverLy, Villeurbanne F-69625, France.
Since recent years, an increasingly large number of toxic chemicals enters watercourses threatening freshwater biodiversity. But ecological studies still poorly document the quantitative patterns linking exposure to complex mixture of toxic chemicals and species communities' integrity in the field. In this context, French monitoring authorities have recently deployed at a national scale in situ biotests using the feeding inhibition of the crustacean Gammarus as toxicity indicator.
View Article and Find Full Text PDFMar Environ Res
December 2024
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
Lipophilic phycotoxins (LPTs) are toxic and lipophilic secondary metabolites produced by toxic microalgae, which pose a serious threat to marine shellfish culture industries. LPTs were systematically investigated in bottom seawater, suspended particulate matter (SPM), sediment, and sediment porewater of Laizhou Bay, a typical mariculture bay in China, to understand the chemical diversity and environment behaviors of LPTs in the benthic environments. Okadaic acid (OA), pectenotoxin-2 (PTX2), dinophysistoxin-1 (DTX1), azaspiracid-2 (AZA2), gymnodimine (GYM), pectenotoxin-2 seco acid (PTX2 SA), 7-epi- pectenotoxin-2 seco acid (7-epi-PTX2 SA), 13-desmethylspirolide C (SPX1), yessotoxin (YTX) and homo YTX (h-YTX) were detected in the benthic environment of Laizhou Bay in spring, indicating that LPTs are rich in chemical diversity.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The Jackson Laboratory, Bar Harbor, ME, USA.
Background: Determining the precise genetic mechanisms that contribute to LOAD, both in coding and noncoding variants, will enable a deeper understanding of pathogenesis and advance preclinical models for the testing of targeted therapeutics.
Methods: We have introduced candidate genetic variants in the EPHA1, BIN1, CD2AP, SCIMP, KLOTHO, PTK2B, ADAMTS4, IL1RAP, IL34, and PTPRB loci into a sensitized mouse model already harboring humanized amyloid-beta, APOE4, and Trem2.R47H alleles knocked in to a C57BL/6J background.
Alzheimers Dement
December 2024
Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
Background: In Alzheimer's disease (AD), changes in the brain transcriptome are hypothesized to mediate the impact of neuropathology on cognition. Gene expression profiling from postmortem brain tissue is a promising approach to identify causal pathways; however, there are challenges to definitively resolve the upstream pathologic triggers along with the downstream consequences for AD clinical manifestations.
Method: We have functionally dissected 30 AD-associated gene coexpression modules using a cross-species strategy in Drosophila melanogaster models.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!