Organophosphorus nerve agents (NAs) are the most lethal chemical warfare agents and have been used by state and non-state actors since their discovery in the 1930s. They covalently modify acetylcholinesterase, preventing the breakdown of acetylcholine (ACh) with subsequent loss of synaptic transmission, which can result in death. Despite the availability of several antidotes for OPNA exposure, none directly targets the nicotinic acetylcholine receptor (nAChR) mediated component of toxicity. Non-oxime bispyridinium compounds (BPDs) have been shown previously to partially counteract the effects of NAs at skeletal muscle tissue, and this has been attributed to inhibition of the muscle nAChR. Functional data indicate that, by increasing the length of the alkyl linker between the pyridinium moieties of BPDs, the antagonistic activity at nAChRs can be improved. Molecular dynamics simulations of the adult muscle nAChR in the presence of BPDs identified key residues likely to be involved in binding. Subsequent two-electrode voltage clamp recordings showed that one of the residues, εY131, acts as an allosteric determinant of BPD binding, and that longer BPDs have a greater stabilizing effect on the orthosteric loop C than shorter ones. The work reported will inform future design work on novel antidotes for treating NA exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2021.01.013 | DOI Listing |
Toxicol Lett
January 2025
Bundeswehr Institute for Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany. Electronic address:
The nicotinic acetylcholine receptor (nAChR) is a pentameric ligand-gated ion channel (pLGIC) commonly used as a model for receptors belonging to the Cys-loop superfamily. Members of pLGICs are standardly used in numerous toxicological investigations e.g.
View Article and Find Full Text PDFObjectives: The current gold standard for immunofluorescent (IF) visualization of neuromuscular junctions (NMJs) in muscle utilizes frozen tissue sections with fluorescent conjugated antibodies to demarcate neurons and IF alpha-bungarotoxin (α-BTX) to demarcate motor endplates. Frozen tissue sectioning comes with inherent inescapable limitations, including cryosectioning artifact and limited sample shelf-life. However, a parallel approach to identify NMJs in paraffin-embedded tissue sections has not been previously described.
View Article and Find Full Text PDFJ Physiol
January 2025
Université Paris Cité, CNRS, ENS Paris Saclay, Centre Borelli UMR 9010, Paris, France.
Terminal Schwann cells (TSCs) are capable of regulating acetylcholine (ACh) release at the neuromuscular junction (NMJ). We have identified GABA as a gliotransmitter at mouse NMJs. When ACh activates α7 nicotinic ACh receptor (nAChRs) on TSCs, GABA is released and activates GABA receptors on the nerve terminal that subsequently reduce ACh release.
View Article and Find Full Text PDFConnect Tissue Res
December 2024
Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain.
Purpose: After peripheral nerve injury (PNI), prolonged denervation of the target muscle prevents adequate reinnervation even if the nerve is repaired. The aim of this work is to analyze the effect of intramuscular Platelet-Rich Plasma (PRP) in a denervated muscle due to PNI.Materials and.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS/Université Paris-Sud, 91198 Gif-sur-Yvette, Cedex, France.
Botulinum neurotoxin type-A (BoNT/A), which blocks quantal acetylcholine (ACh) release at the neuromuscular junction (NMJ), has demonstrated its efficacy in the symptomatic treatment of blepharospasm. In 3.89% of patients treated for blepharospasm at Tenon Hospital, BoNT/A was no longer effective in relieving the patient's symptoms, and a partial upper myectomy of the muscle was performed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!