Electrosprayed zein nanoparticles containing 10% (w/w) of clove essential oil (CEO) were prepared and then with different levels (5, 10, and 15% w/w) in the starch matrix were used. The incorporation of zein nanoparticles in the structure of starch-based bio-nanocomposites films was confirmed by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Increasing the level of application of zein bio-nanofillers in the starch film matrix increased thickness and contact angle. However, the use of electrosprayed zein nanoparticles loaded by CEO (EZN-CEO) up to 10% significantly (p < 0.05) reduced the water vapor permeability (WVP), but using 15% of the nanoparticles increased the WVP of the films significantly (p < 0.05). Increasing the EZN-CEO up to 10% significantly (p < 0.05) increased the tensile strength and Young's modulus and reduced the elongation at break of the films. Sustained release of CEO from the bio-nanocomposites showed that the most release of the CEO occurs in 10% ethanol medium. The Fickian diffusion was the predominant mechanism in the release of the CEO, and the Peleg model was selected as the best one to explain the release behavior. The structures designed in this study can be used as an edible coating and bio-preservative in perishable food products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.01.118 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!