Effects of a large-scale, natural sediment deposition event on plant cover in a Massachusetts salt marsh.

PLoS One

Jackson Estuarine Laboratory, School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, New Hampshire, United States of America.

Published: June 2021

In mid-winter 2018, an unprecedented sediment deposition event occurred throughout portions of the Great Marsh in Massachusetts. Evaluation of this event in distinct marsh areas spanning three towns (Essex, Ipswich, and Newbury) revealed deposition covering 29.2 hectares with an average thickness of 30.1±2.1 mm measured shortly after deposition. While sediment deposition helps marshes survive sea level rise by building elevation, effects of such a large-scale deposition on New England marshes are unknown. This natural event provided an opportunity to study effects of large-scale sediment addition on plant cover and soil chemistry, with implications for marsh resilience. Sediment thickness did not differ significantly between winter and summer, indicating sediment is not eroding or compacting. The deposited sediment at each site had similar characteristics to that of the adjacent mudflat (e.g., texture, bivalve shells), suggesting that deposited materials resulted from ice rafting from adjacent flats, a natural phenomenon noted by other authors. Vegetative cover was significantly lower in plots with rafted sediment (75.6±2.3%) than sediment-free controls (93.1±1.6%) after one growing season. When sorted by sediment thickness categories, the low thickness level (1-19 mm) had significantly greater percent cover than medium (20-39 mm) and high (40-90 mm) categories. Given that sediment accretion in the Great Marsh was found to average 2.7 mm per year, the sediment thickness documented herein represents ~11 years of sediment accretion with only a 25% reduction in plant cover, suggesting this natural sediment event will likely increase long-term marsh resilience to sea level rise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822311PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245564PLOS

Publication Analysis

Top Keywords

sediment
13
effects large-scale
12
sediment deposition
12
plant cover
12
sediment thickness
12
natural sediment
8
deposition event
8
great marsh
8
sea level
8
level rise
8

Similar Publications

Ornithopod dinosaurs appeared during the Middle Jurassic, but it was in the Lower Cretaceous they started their successful evolutionary history. Different phylogenies describing the evolutionary relationships of Ornithopoda are mostly based on cranial features, however there is a lack of well-preserved and complete skulls for the basal member of the clade, hampering our knowledge on the mode and tempo of these herbivorous dinosaurs. Here we describe YLSNHM 01942, a well-preserved skull of a juvenile neornithischian from the Liaoning Province of China.

View Article and Find Full Text PDF

Ecosystem-scale primary production may be proximately limited by nitrogen (N) but ultimately limited by phosphorus (P) because N fixation contributes new N that accumulates relative to P at ecosystem scales. However, the duration needed to transition between proximate N limitation and ultimate P limitation remains unknown for most ecosystems, including lakes. Here we present the results of a fully replicated, multi-annual lake mesocosm experiment that permitted full air-water-sediment interactions that mimicked lake ecosystem ecology.

View Article and Find Full Text PDF

Pollution in marine creeks has been increasing due to anthropogenic activities and has been a global concern. Limited research has been conducted on pharmaceuticals in marine sediment and macroalgae in African countries. In the present study, the levels of pharmaceuticals were assessed in surface sediment and different species of macroalgae (ulvophyceae; Cladophora sudanensis, Chaetomorpha crassa, Chaetomorpha indica, Enteromorpha kylinii, Ulva reticulate, Ulva lactuca and Cladophora sibugae) in Mombasa peri-urban creeks (Tudor, Makupa and Mtwapa creek) and Gazi bay during dry and wet seasons.

View Article and Find Full Text PDF

Trichomoniasis in Men: A Neglected Factor in Male Infertility?

Acta Parasitol

January 2025

Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, P.O. Box: 65157838736, Hamadan, Iran.

Purpose: This study is aimed to detect the frequency of trichomoniasis, a sexually transmitted infection caused by an anaerobic protozoan Trichomonas vaginalis, in men referred to the Fertility and Infertility Research Center Hamadan University of Medical Sciences.

Methods: In this cross-sectional study, a group of 197 male volunteers who sought medical attention for issues related to infertility participated. The urine and semen samples were collected in sterile conditions.

View Article and Find Full Text PDF

A simple method for determining elemental sulfur in environmental water was developed and applied to seawater samples collected immediately after the occurrence of blue tides in Tokyo Bay. To investigate the concentration and extraction methods, artificial elemental sulfur was quantitatively produced by oxidizing a sulfide solution with an iodine solution, then used as a standard reagent in the experiments. To concentrate the elemental sulfur in the water sample, glass filter paper (GF/F) was used to filter and collect the elemental sulfur.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!