LRFN2 encodes a synaptic adhesion-like molecule that physically interacts with N-methyl-D-aspartate (NMDA) receptor 1 and its scaffold proteins. Previous studies in humans and mice have demonstrated its genetic association with neurodevelopmental disorders such as learning deficiency and autism. In this study, we showed that Lrfn2-deficient (KO) mice exhibit abnormalities of erythropoietic systems due to altered NMDA receptor function. In mature Lrfn2 KO male mice, peripheral blood tests showed multilineage abnormalities, including normocytic erythrocythemia, and reduced platelet volume. Colony forming unit assay using bone marrow cells revealed decreases in the counts of erythrocyte progenitors (CFU-E) as well as granulocytes and monocyte progenitors (CFU-GM). Whole bone marrow cell staining showed that serum erythropoietin (EPO) level was decreased and EPO receptor-like immunoreactivity was increased. Flow cytometry analysis of bone marrow cells revealed increased early erythroblast count and increased transferrin receptor expression in late erythroblasts. Further, we found that late erythroblasts in Lrfn2 KO exhibited defective NMDA receptor-mediated calcium influx, which was inhibited by the NMDA receptor antagonist MK801. These results indicate that Lrfn2 has biphasic roles in hematopoiesis and is associated with the functional integrity of NMDA receptors in hematopoietic cells. Furthermore, taken together with previous studies that showed the involvement of NMDA receptors in hematopoiesis, the results of this study indicate that Lrfn2 may regulate erythropoiesis through its regulatory activity on NMDA receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822338PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245624PLOS

Publication Analysis

Top Keywords

nmda receptor
12
bone marrow
12
nmda receptors
12
nmda
8
nmda receptor-mediated
8
receptor-mediated calcium
8
calcium influx
8
lrfn2-deficient mice
8
previous studies
8
marrow cells
8

Similar Publications

Background/aim: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, though rare, is the most common form of autoimmune encephalitis, predominantly affecting young individuals, particularly females. Standard treatments include corticosteroids, intravenous immunoglobulins (IVIG), and plasmapheresis, with rituximab recommended for those unresponsive to first-line therapies. However, reliable biomarkers for clinical assessment remain elusive.

View Article and Find Full Text PDF

NMDA receptor mediated autoimmune encephalitis (NMDAR-AE) frequently results in persistent sensory-motor deficits, especially in children, yet the underlying mechanisms remain unclear. This study investigated the long- term effects of exposure to a patient-derived GluN1-specific monoclonal antibody (mAb) during a critical developmental period (from postnatal day 3 to day 12) in mice. We observed long-lasting sensory-motor deficits characteristic of NMDAR-AE, along with permanent changes in callosal axons within the primary somatosensory cortex (S1) in adulthood, including increased terminal branch complexity.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) plays important roles in brain development and neural function. Constitutive knockout of the splicing regulator RBM4 reduces BDNF expression in the developing brain and causes cerebellar hypoplasia, an autism-like feature. Here, we show that Rbm4 knockout induced intron 6 retention of Hsf1, leading to downregulation of HSF1 protein and its downstream target BDNF.

View Article and Find Full Text PDF

AIM2 promotes excitatory glutamate receptor expression by inhibiting STING and contributes to bone cancer pain in male mice.

Sci Rep

December 2024

Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.

Bone cancer pain (BCP) is a common clinical problem in cancer patients. The plasticity of excitatory neurons within the spinal dorsal horn plays a significant role in the development of BCP. This study explored the roles of absent in melanoma 2 (AIM2) and stimulator of interferon gene (STING) in BCP using male C57BL/6J mice.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired reasoning. It is the leading cause of dementia in older adults, marked by the pathological accumulation of amyloid-beta plaques and neurofibrillary tangles. These pathological changes lead to widespread neuronal damage, significantly impacting daily functioning and quality of life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!