Seipin is a disk-like oligomeric endoplasmic reticulum (ER) protein important for lipid droplet (LD) biogenesis and triacylglycerol (TAG) delivery to growing LDs. Here we show through biomolecular simulations bridged to experiments that seipin can trap TAGs in the ER bilayer via the luminal hydrophobic helices of the protomers delineating the inner opening of the seipin disk. This promotes the nanoscale sequestration of TAGs at a concentration that by itself is insufficient to induce TAG clustering in a lipid membrane. We identify Ser166 in the α3 helix as a favored TAG occupancy site and show that mutating it compromises the ability of seipin complexes to sequester TAG in silico and to promote TAG transfer to LDs in cells. While the S166D-seipin mutant colocalizes poorly with promethin, the association of nascent wild-type seipin complexes with promethin is promoted by TAGs. Together, these results suggest that seipin traps TAGs via its luminal hydrophobic helices, serving as a catalyst for seeding the TAG cluster from dissolved monomers inside the seipin ring, thereby generating a favorable promethin binding interface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857593 | PMC |
http://dx.doi.org/10.1371/journal.pbio.3000998 | DOI Listing |
Cell Commun Signal
January 2025
IBMC - Instituto de Biologia Molecular E Celular, University of Porto, Porto, Portugal.
Background: Seipin is a protein encoded by the BSCL2 gene in humans and SEI1 gene in yeast, forming an Endoplasmic Reticulum (ER)-bound homo-oligomer. This oligomer is crucial in targeting ER-lipid droplet (LD) contact sites, facilitating the delivery of triacylglycerol (TG) to nascent LDs. Mutations in BSCL2, particularly N88S and S90L, lead to seipinopathies, which correspond to a cohort of motor neuron diseases (MNDs) characterized by the accumulation of misfolded N88S seipin into inclusion bodies (IBs) and cellular dysfunctions.
View Article and Find Full Text PDFContact (Thousand Oaks)
December 2024
Institute of Cell Dynamics and Imaging, University of Münster, Münster, Germany.
Lipid droplets frequently form contact sites with the membrane of the vacuole, the lysosome-like organelle in yeast. These vacuole lipid droplet (vCLIP) contact sites respond strongly to metabolic cues: while only a subset of lipid droplets is bound to the vacuole when nutrients are abundant, other metabolic states induce stronger contact site formation. Physical lipid droplet-vacuole binding is related to the process of lipophagy, a lipid droplet-specific form of microautophagy.
View Article and Find Full Text PDFNat Commun
December 2024
Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr. Bohr-Gasse 9/3, 1030, Vienna, Austria.
The nuclear envelope is a specialized subdomain of the endoplasmic reticulum and comprises the inner and outer nuclear membranes. Despite the crucial role of the inner nuclear membrane in genome regulation, its lipid metabolism remains poorly understood. Phosphatidic acid (PA) is essential for membrane growth as well as lipid storage.
View Article and Find Full Text PDFPlant J
December 2024
BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, 76203, Texas, USA.
Lipid droplets (LDs) are unusual organelles that have a phospholipid monolayer surface and a hydrophobic matrix. In oilseeds, this matrix is nearly always composed of triacylglycerols (TGs) for efficient storage of carbon and energy. Various proteins play a role in their assembly, stability and turnover, and even though the major structural oleosin proteins in seed LDs have been known for decades, the factors influencing LD formation and dynamics are still being uncovered mostly in the "model oilseed" Arabidopsis.
View Article and Find Full Text PDFFront Cell Dev Biol
October 2024
Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
Lipid droplets (LDs) are evolutionarily conserved dynamic organelles that play an important role in cellular physiology. Growing evidence suggests that LD biogenesis occurs at discrete endoplasmic reticulum (ER) subdomains demarcated by the lipodystrophy protein, Seipin, lack of which impairs adipogenesis. However, the mechanisms of how these domains are selected is not completely known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!