The proteolytic autophagy system is involved in a major regulatory pathway in dexamethasone (Dex)-induced muscle atrophy. Sirtuin 2 (SIRT2) is known to modulate autophagy signaling, exerting effects in skeletal muscle atrophy. We examined the effects of SIRT2 on autophagy in Dex-induced myoatrophy. Tostudy this, mice were randomly distributed among the normal, Dex, and sirtinol groups. C2C12 cells were differentiated into myotubes and transduced with lentivirus carrying -green fluorescent protein (GFP) or short hairpin RNA (-shRNA)-GFP. To evaluate the mass and function of skeletal muscles, we measured myofiber cross-sectional area, myotube size, gastrocnemius (GA) muscle wet mass:body mass ratio (%), and time to exhaustion. The expression levels of SIRT2, myosin heavy chain, microtubule-associated protein 1 light chain 3 (LC3), and Beclin-1 were measured using Western blotting and quantitative reverse transcription - polymerase chain reaction. Inhibition of SIRT2 markedly attenuated GA muscle mass and endurance capacity. The same phenotype was observed in -shRNA-treated myotubes, as evidenced by their decreased size. Conversely, overexpression of SIRT2 alleviated Dex-induced myoatrophy in vitro. Moreover, SIRT2 negatively regulated the expression of LC3b and Beclin-1 in skeletal muscles. These findings suggest that SIRT2 activation protects myotubes against Dex-induced atrophy through inhibition of the autophagy system; this phenomenon may serve as a target for treating glucocorticoid-induced myopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/bcb-2020-0445 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!