Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Controllable writing and deleting of nanoscale magnetic skyrmions are key requirements for their use as information carriers for next-generation memory and computing technologies. While several schemes have been proposed, they require complex fabrication techniques or precisely tailored electrical inputs, which limits their long-term scalability. Here, we demonstrate an alternative approach for writing and deleting skyrmions using conventional electrical pulses within a simple, two-terminal wire geometry. X-ray microscopy experiments and micromagnetic simulations establish the observed skyrmion creation and annihilation as arising from Joule heating and Oersted field effects of the current pulses, respectively. The unique characteristics of these writing and deleting schemes, such as spatial and temporal selectivity, together with the simplicity of the two-terminal device architecture, provide a flexible and scalable route to the viable applications of skyrmions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.0c03686 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!