The hemocompatibility of blood-contacting medical devices remains one of the major challenges in medical device development. A common tool for the analysis of adherent and activated platelets on materials following in vitro tests is microscopy. Currently, most researchers develop their own routines, resulting in numerous different methods that are applied. The majority of those (semi-)manual methods analyze only a very small fraction of the material surface (<1%), which neglects the inhomogeneity of platelet distribution and makes results hardly comparable. Within this study, we examined the relation between the fraction of analyzed sample area and the platelet adhesion result. By means of image segmentation and machine learning algorithms, 103 100 microscopy images were analyzed automatically. We discovered a crucial impact of the analyzed surface fraction and thus a misrepresentation of a surface's platelet adhesion unless up to 40% of the sample surface is analyzed. These findings underline the necessity of standardization in the field of in vitro hemocompatibility tests and analyses in particular and provide a first basis to make future tests more reliable and comparable.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.0c01589DOI Listing

Publication Analysis

Top Keywords

hemocompatibility evaluation
4
evaluation biomaterials-the
4
biomaterials-the crucial
4
crucial impact
4
impact analyzed
4
analyzed area
4
area hemocompatibility
4
hemocompatibility blood-contacting
4
blood-contacting medical
4
medical devices
4

Similar Publications

This study examines the hemocompatibility of gellan-gum-based hybrid hydrogels, with varying gellan-gum concentrations and constant sodium alginate and silk fibroin concentrations, respectively, in accordance with ISO 10993-4 standards. While previous studies have focused on cytocompatibility, the hemocompatibility of these hydrogels remains underexplored. Hydrogels were formulated with 0.

View Article and Find Full Text PDF

Aim: Voriconazole (VRZ) is highly effective in treating invasive pulmonary aspergillosis (IPA), in addition to hepatotoxicity. Therefore, the current study focuses on the development and characterization of voriconazole-loaded microspheres (VRZ@PCL MSPs) to augment pulmonary localization and antifungal efficacy.

Methods: VRZ@PCL MSPs were fabricated by using the o/w emulsion method.

View Article and Find Full Text PDF

: Patients with a HeartMate 3 (HM3) left ventricular assist device (LVAD) typically receive anticoagulation and antiplatelet therapy. The HM3 has shown a marked reduction in hemocompatibility-related adverse events (HRAEs) like stroke, bleeding, and pump thrombosis. This study evaluated whether aspirin (ASA) response influences HRAE incidence and if ASA sensitivity changes over time in HM3 recipients.

View Article and Find Full Text PDF

Nasal packing is a critical procedure in postoperative care and trauma management aimed at controlling bleeding, providing structural support, and promoting tissue healing. However, conventional nasal packs often lead to discomfort, infection risks, and secondary tissue damage. To address these challenges, this study explores the potential use of biodegradable and biocompatible gelatin-carrageenan composite scaffolds as an alternative nasal packing material.

View Article and Find Full Text PDF

A Novel Polymer Film to Develop Heart Valve Prostheses.

Polymers (Basel)

November 2024

Icon Lab Gmbh Ltd., 1 Barrikad St., Nizhny Novgorod 603003, Russia.

Polymer heart valves are a promising alternative to bioprostheses, the use of which is limited by the risks of calcific deterioration of devitalized preserved animal tissues. This is especially relevant in connection with the increasingly widespread use of transcatheter valves. Advances in modern organic chemistry provide a wide range of polymers that can replace biological material in the production of valve prostheses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!