Introduction: The ergogenic effects of respiratory alkalosis induced by prior voluntary hyperventilation (VH) are controversial. This study examined the effects of prior VH on derived parameters from the 3-min all-out cycling test (3MT).
Methods: Eleven men ( = 46 ± 8 mL·kg-1·min-1) performed a 3MT preceded by 15 min of rest (CONT) or VH ( = 38 ± 5 L·min-1) with PETCO2 reduced to 21 ± 1 mm Hg (HYP). End-test power (EP; synonymous with critical power) was calculated as the mean power output over the last 30 s of the 3MT, and the work done above EP (WEP; synonymous with W') was calculated as the power-time integral above EP.
Results: At the start of the 3MT, capillary blood PCO2 and [H+] were lower in HYP (25.2 ± 3.0 mm Hg, 27.1 ± 2.6 nmol·L-1) than CONT (43.2 ± 2.0 mm Hg, 40.0 ± 1.5 nmol·L-1) (P < 0.001). At the end of the 3MT, blood PCO2 was still lower in HYP (35.7 ± 5.4 mm Hg) than CONT (40.6 ± 5.0 mm Hg) (P < 0.001). WEP was 10% higher in HYP (19.4 ± 7.0 kJ) than CONT (17.6 ± 6.4 kJ) (P = 0.006), whereas EP was 5% lower in HYP (246 ± 69 W) than CONT (260 ± 74 W) (P = 0.007). The ΔWEP (J·kg-1) between CONT and HYP correlated positively with the PCO2 immediately before the 3MT in HYP (r = 0.77, P = 0.006).
Conclusion: These findings suggest that acid-base changes elicited by prior VH increase WEP but decrease EP during the all-out 3MT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1249/MSS.0000000000002608 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!