Bone Marrow Aspirate Concentrate Combined with in Situ Forming Bioresorbable Gel Enhances Intervertebral Disc Regeneration in Rabbits.

J Bone Joint Surg Am

Departments of Orthopedic Surgery (D.U., K.Y., T.T., K.U., N.I., and H.S.) and Advanced Medicine for Spine and Spinal Cord Disorders (H.S.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.

Published: April 2021

Background: The current surgical procedure of choice for intervertebral disc (IVD) herniation is discectomy, which induces postoperative IVD degeneration. Thus, cell-based therapies, as a 1-step simple procedure, are desired because of the poor capacity of IVDs for self-repair. The aim of this study was to investigate the repair efficacy of ultra-purified alginate (UPAL) gels containing bone marrow aspirate concentrate (BMAC) for the treatment of discectomy-associated IVD degeneration in rabbits.

Methods: The mechanical properties of 3 types of gels-UPAL, UPAL containing bone marrow-derived mesenchymal stem cells (BMSCs), and UPAL containing BMAC-were evaluated. Forty rabbits were assigned to 5 groups: intact control, discectomy (to make the cavity), UPAL (implantation of the UPAL gel after discectomy), BMSCs-UPAL (implantation of a combination of autogenic BMSCs and UPAL gel after discectomy), and BMAC-UPAL (implantation of a combination of BMAC and UPAL gel after discectomy). The gels were implanted at 4 weeks after induction of IVD degeneration. At 4 and 12 weeks, magnetic resonance imaging (MRI) as well as histological and immunohistochemical analyses were performed to analyze IVD degeneration qualitatively and the viability of the implanted cells.

Results: There was no significant difference among the 3 types of gels in terms of the results of unconfined compression tests. The implanted cells survived for 12 weeks. The histological grades of the BMSCs-UPAL (mean and standard deviation, 2.50 ± 0.53; p < 0.001) and BMAC-UPAL (2.75 ± 0.64, p = 0.001) showed them to be more effective in preventing degeneration than UPAL gel alone (3.63 ± 0.52). The effectiveness of BMAC-UPAL was not significantly different from that of BMSCs-UPAL, except with respect to type-II collagen synthesis.

Conclusions: BMAC-UPAL significantly enhanced the repair of IVD defects created by discectomy. This approach could be an effective therapeutic strategy owing to its simplicity and cost-effectiveness compared with cell therapy using culture-expanded BMSCs.

Clinical Relevance: Local administration of the BMAC combined with UPAL gel could be an effective therapeutic strategy to enhance IVD repair after discectomy.

Download full-text PDF

Source
http://dx.doi.org/10.2106/JBJS.20.00606DOI Listing

Publication Analysis

Top Keywords

upal gel
20
ivd degeneration
16
gel discectomy
12
upal
9
bone marrow
8
marrow aspirate
8
aspirate concentrate
8
intervertebral disc
8
bmscs upal
8
implantation combination
8

Similar Publications

Although discectomy is commonly performed for lumbar intervertebral disc (IVD) herniation, the capacity for tissue repair after surgery is limited, resulting in residual lower back pain, recurrence of IVD herniation, and progression of IVD degeneration. Cell-based therapies, as one-step procedures, are desirable for enhancing IVD repair. This study aimed to investigate the therapeutic efficacy of a combination of newly developed ultra-purified alginate (UPAL) gel and bone marrow aspirate concentrate (BMAC) implantation for IVD repair after discectomy.

View Article and Find Full Text PDF

Single-step ultra-purified alginate gel implantation in patients with knee chondral defects.

Bone Joint J

August 2023

Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.

Aims: Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury.

Methods: A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.

View Article and Find Full Text PDF

Injection of Ultra-Purified Stem Cells with Sodium Alginate Reduces Discogenic Pain in a Rat Model.

Cells

February 2023

Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Sapporo 060-8638, Japan.

Intervertebral disc (IVD) degeneration is a major cause of low back pain. However, treatments directly approaching the etiology of IVD degeneration and discogenic pain are not yet established. We previously demonstrated that intradiscal implantation of cell-free bioresorbable ultra-purified alginate (UPAL) gel promotes tissue repair and reduces discogenic pain, and a combination of ultra-purified, Good Manufacturing Practice (GMP)-compliant, human bone marrow mesenchymal stem cells (rapidly expanding clones; RECs), and the UPAL gel increasingly enhanced IVD regeneration in animal models.

View Article and Find Full Text PDF

Herniated nucleus pulposus (NP), one of the most common diseases of the spine, is surgically treated by removing the sequestered NP. However, intervertebral disc (IVD) defects may remain after discectomy, leading to inadequate tissue healing and predisposing patients to IVD degeneration. An acellular, bioresorbable, ultra-purified alginate (UPAL) gel (dMD-001) implantation system can be used to fill any IVD defects in order to prevent IVD degeneration after discectomy.

View Article and Find Full Text PDF

Background: One of the most important limitations of osteochondral autograft transplant is the adverse effect on donor sites in the knee. Ultrapurified alginate (UPAL) gel is a novel biomaterial that enhances hyaline-like cartilage repair for articular defects. To avoid the need for knee cartilage autografting when treating osteochondritis dissecans (OCD) of the capitellum, we developed a surgical procedure involving a bone marrow stimulation technique (BMST) augmented by implantation of UPAL gel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!