Bone marrow mesenchymal stem cells (BMSCs) are a potential source of osteoblasts and have been widely used in clinical therapies due to their pluripotency. Recent publications have found that resveratrol (RSVL) played a crucial role in the proliferation and differentiation of BMSCs; however, the underlying molecular mechanism of RSVL-induced BMSCs osteogenic differentiation needs to be fully elucidated. The objective of this study was to explore functions of miRNAs in the RSVL-treated BMSCs and its effects on the differentiation potentials of BMSCs. The findings demonstrated that RSVL enhanced the osteogenesis and suppressed the adipogenesis of BMSCs in a dose-dependent manner. Besides, a novel regulatory axis containing miR-320c, and its target Runx2 was found during the differentiation process of BMSCs under RSVL treatment. Increase of miR-320c reduced the osteogenic potential of BMSCs, while knockdown of miR-320c played a positive role in the osteogenesis of BMSCs. In contrast, overexpression of miR-320c accelerated the adipogenic differentiation, while knockdown of miR-320c restrained the adipogenic differentiation of BMSCs. The results confirmed that Runx2 might be the direct target of miR-320c in RSVL-promoted osteogenic differentiation of BMSCs. This study revealed that RSVL might be used for the treatment of bone loss related diseases and miR-320c could be regarded as a novel and potential target to regulate the biological functions of BMSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/term.3176 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!