Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Free-living parasite life stages may contribute substantially to ecosystem biomass and thus represent a significant source of energy flow when consumed by non-host organisms. However, ambient temperature and the predator's own infection status may modulate consumption rates towards parasite prey. We investigated the combined effects of temperature and predator infection status on the consumer functional response of three-spined sticklebacks towards the free-living cercariae stages of two common freshwater trematode parasites (Plagiorchis spp., Trichobilharzia franki). Our results revealed genera-specific functional responses and consumption rates towards each parasite prey: Type II for Plagiorchis spp. and Type III for T. franki, with an overall higher consumption rate on T. franki. Elevated temperature (13°C) increased the consumption rate on Plagiorchis spp. prey for sticklebacks with mild cestode infections (<5% fish body weight) only. High consumption of cercarial prey by sticklebacks may impact parasite population dynamics by severely reducing or even functionally eliminating free-living parasite life stages from the environment. This supports the potential role of fish as biocontrol agents for cercariae with similar dispersion strategies, in instances where functional response relationships have been established. Our study demonstrates how parasite consumption by non-host organisms may be shaped by traits inherent to parasite transmission and dispersal, and emphasises the need to consider free-living parasite life stages as integral energy resources in aquatic food webs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1365-2656.13427 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!